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Abstract. In this paper we study, both analytically and numerically, questions involving the distribution of eigen-
values of Maass forms on the moonshine groups Γ0(N)+, where N > 1 is a square-free integer. After we prove
that Γ0(N)+ has one cusp, we compute the constant term of the associated non-holomorphic Eisenstein series. We
then derive an “average” Weyl’s law for the distribution of eigenvalues of Maass forms, from which we prove the

“classical” Weyl’s law as a special case. The groups corresponding to N = 5 and N = 6 have the same signature;
however, our analysis shows that, asymptotically, there are infinitely more cusp forms for Γ0(5)+ than for Γ0(6)+.
We view this result as being consistent with the Phillips-Sarnak philosophy since we have shown, unconditionally,

the existence of two groups which have different Weyl’s laws. In addition, we employ Hejhal’s algorithm, together
with recently developed refinements from [32], and numerically determine the first 3557 of Γ0(5)+ and the first 12474
eigenvalues of Γ0(6)+. With this information, we empirically verify some conjectured distributional properties of
the eigenvalues.

1. Introduction

Let {pi}, with i = 1, . . . , r, be a set of distinct primes, so then N = p1 · · · pr is a square-free, non-negative integer.
The subset of SL(2,R), defined by

Γ0(N)+ :=

{

e−1/2

(

a b
c d

)

∈ SL(2,R) : ad− bc = e, a, b, c, d, e ∈ Z, e | N, e | a, e | d, N | c
}

is an arithmetic subgroup of SL(2,R). The groups Γ0(N)+ were first considered by Helling [19] where it was proved
that if a subgroup G ⊆ SL(2,R) is commensurable with SL(2,Z), then there exists a square-free, non-negative
integer N such that G is a subgroup of Γ0(N)+. We also refer to page 27 of [28] where the groups Γ0(N)+ are
cited as examples of groups which are commensurable with SL(2,Z) but non necessarily conjugate to a subgroup
of SL(2,Z).

Following the discussion in [10, 11, 12, 13, 15], we employ the term “moonshine group” when discussing Γ0(N)+.
The genus zero moonshine subgroups of SL(2,R) arise in the “monstrous moonshine” conjectures of Conway and
Norton, which were later proved in the celebrated work of Borcherds. Gannon’s book [15] provides an excellent
discussion of the mathematics and mathematical history of monstrous moonshine. In particular, we refer to Con-
jecture 7.1.1 where the Conway-Norton conjecture is stated, which in its original form referred to certain genus zero
subgroups of Moonshine-type. After the work of Borcherds, the authors in [10] described solely in group-theoretic
terms the 171 genus zero subgroups that appear in mathematics of “monstrous moonshine”. Amongst this list are
those groups of the form Γ0(N)+ which have genus zero.

Our interest in the groups Γ0(N)+ stems from the work in [23]. In that article, the groups Γ0(5)
+ and Γ0(6)

+

were examples of arithmetically defined topologically equivalent groups which have distinct spectral properties.
More specifically, in [23] the authors defined an invariant associated to any non-compact, finite volume hyperbolic
Riemann surface, where the invariant is equal to the larger of two quantities: one coming from the length spectrum
and another associated to the determinant of the scattering matrix. The groups Γ0(5)

+ and Γ0(6)
+ have the same

signature and are arithmetically defined, yet have different values of the invariant defined in [23]. As a result, the
main theorem of [23] showed that, in somewhat vague terms, the derivative of the Selberg zeta function of one
surface has more zeros than the derivative of the Selberg zeta function of the other. Since the spectrum of a surface
is measured by the zeros of the Selberg zeta function, the main result of [23] can be interpreted as saying that
surfaces Γ0(5)

+ and Γ0(6)
+ are quite different from the point of view of the asymptotics of spectral analysis.

In somewhat vague terms, the purpose of the present article is to investigate the spectral properties of the
Riemann surfaces associated to the groups Γ0(N)+ for square-free N in order to make precise the observations
made in [23]. In doing so, we employ the ideas from [32] which build on Hejhal’s algorithm for numerically
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estimating eigenvalues of the Laplacian on finite volume, hyperbolic Riemann surfaces. With this said, we now can
describe the main results.

Let Γ0(N)+ = Γ0(N)+/{±I}, where I is the identity matrix and let XN := Γ0(N)+\H be the corresponding two
dimensional surface. Since Γ0(N) ⊆ Γ0(N)+, where Γ0(N) denotes the classical congruence subgroup of SL(2,Z),
the surface XN has finite volume. As stated, we will show that for any square-free N , the surface XN has exactly
one cusp; hence the signature of Γ0(N)+ is (g;m1, . . . ,ml; 1) where g denotes the genus of the group and l is the
number of inequivalent elliptic elements of Γ0(N)+ with mi, i = 1, . . . , l denoting the order of the corresponding
elliptic element.

Maass forms on Γ0(N)+ are real analytic, square integrable, eigenfunctions of the Laplacian on the surface XN .
Maass forms which vanish in the cusp are called Maass cusp forms. The hyperbolic Laplacian −∆ on XN has a
discrete and continuous spectrum; see [21] or [17]. The discrete spectrum is denoted by the set {λn}n≥0, counted
with multiplicities; here, we have that 0 = λ0 < λ1 ≤ . . . ≤ λnN−1 < 1/4 ≤ λnN

≤ . . . and λn → ∞ as n → ∞. Let
m1/4,N ≥ 0 denote the multiplicity of λ = 1/4 as (eventual) eigenvalue of −∆. Maass cusp forms span the positive
discrete part of the spectrum.

Let {rn} denote the set of all positive real numbers satisfying the equation 1/4 + r2n = λn. For T > 0, the
function NN (T ) := NN [0 < rn ≤ T ] counts the number of rn such that 0 < rn ≤ T , or, equivalently, the number of
eigenvalues of Maass cusp forms which lie in the interval (1/4, T 2 + 1/4].

For any T > 0 and square-free N , which we write as N = p1 · · · pr, define αN (j, T ) := T log pj −⌊T log pj

π ⌋π where
⌊x⌋ denotes the greatest integer less than or equal to x.

The main analytical result of the paper is the following theorem:

Theorem 1 (Average Weyl’s law for Γ0(N)+). Let (g;m1, . . . ,ml; 1) be the signature of the group Γ0(N)+ and let
nN ≥ 1 denote the number of small eigenvalues of the Laplacian −∆ on XN . Then

NN (T ) = MN (T ) + SN (T )

where

MN (T ) =
Vol(XN )

4π
T 2 − 2T log T

π
+

T

π
(2 + log(π/2N)) +

l
∑

i=1

1

4mi

mi−1
∑

j=1

1

sin2(πj/mi)
− Vol(XN )

48π
−m1/4,N

− 3

4
− nN

2
+

1

2π

r
∑

j=1

αN (j, T )− 1

π

r
∑

j=1

arctan







(√
pj − 1

√
pj + 1

)(−1)⌊
T log pj

π
⌋

tan

(

αN (j, T )

2

)






+GN (T ),

with

|GN (T )| ≤ 1

2π





Vol(XN )(2π + 1)

2π2 exp(2π)
+

l
∑

i=1

mi

2eπ

mi−1
∑

j=1

1

sin(πj/mi)
+

5051

900



 · 1
T
,(1)

for all T > 1 and

T
∫

0

SN (t)dt = O

(

T

log2 T

)

as T → ∞.

The word “average” in the title of our main theorem relates to the form of the error term in the Weyl’s law.
An average Weyl’s law is of importance when it comes to the numerical computation of Maass forms; see [32] and
references therein. In particular, when computing Maass cusp forms numerically, there is always the risk that some
solutions get overlooked. By comparing a numerically found list of eigenvalues of Maass cusp forms with average
Weyl’s law, one can easily determine the number of solutions which have been overlooked. We refer to [32] for a
detailed discussion of this point.

An immediate consequence of Theorem 1 and its proof is the following corollary.

Corollary 2 (Classical Weyl’s law for Γ0(N)+).

NN (T ) =
Vol(XN )

4π
T 2 − 2T log T

π
+

T

π
(2 + log(π/2N)) +O

(

T

log T

)

, as T → ∞.

Generally speaking, the philosophy behind the Phillips-Sarnak conjecture [26, 27] suggests that the spectral
analysis of the Laplacian acting on smooth functions on a finite volume, hyperbolic Riemann surface M should
depend on the arithmetic nature of the underlying Fuchsian group Γ. The first terms in the asymptotic expansion
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in Corollary 2 depend solely on the volume of XN , and then one sees that the coefficient of T depends on N . For
example, the groups corresponding to N = 5 and N = 6 have the same signature, hence X5 and X6 have the same
volume yet, by Corollary 2, X5 has infinitely more eigenvalues than X6 in the sense that

lim
T→∞

π

T
(N5(T )−N6(T )) = log(6/5) > 0.

Later in this article, we provide a list of further examples of topologically equivalent surfaces associated to moonshine
groups which have different Weyl’s laws. We view these results as being consistent with and in support of the
Phillips-Sarnak philosophy.

Having established that the classical Weyl’s law associated to Γ0(5)
+ and Γ0(6)

+ differ, we find it interesting
to investigate other conjectures concerning the distribution of eigenvalues. Using the methodology from [32], and
references therein, we have numerically computed sets of Maass cusp forms associated to Γ0(5)

+ and Γ0(6)
+. On

Γ0(5)
+ our numerical results cover the range 0 < λ ≤ 1252 + 1/4 which includes 3557 Maass cusp forms, and on

Γ0(6)
+ we cover the range 0 < λ ≤ 2302 + 1/4 which includes 12474 Maass cusp forms. The distribution of the

numerically found eigenvalues is in agreement with the following conjecture.

Conjecture 3 (Arithmetic Quantum Chaos [3, 5]). On surfaces of constant negative curvature that are generated
by arithmetic fundamental groups, the distribution of the discrete eigenvalues of the hyperbolic Laplacian approaches
a Poisson distribution as λ → ∞.

A particular feature of a Poisson distribution is the “absence of memory”, which, in our case, asserts that an
eigenvalue cannot be predicted from knowledge of all the previous eigenvalues. The computation of eigenvalues
allows us to verify that, numerically, eigenvalues of the Laplacian on X5 and X6 are uncorrelated.

This paper is organized as follows. In section 2 we provide preliminary material for both the theoretical and
numerical aspects of our work. Theoretically, we prove that the Riemann surfaces associated to the moonshine
groups Γ0(N)+ for square-free N have one cusp, and we compute the first Fourier coefficient of the corresponding
non-holomorphic Eisenstein series. In order to make this article as self-contained as possible, we include a discussion
of Hejhal’s algorithm for numerically estimating eigenvalues together with Turing’s method which is used to verify
that no eigenvalue has been missed. In section 3 we prove Theorem 1, and as corollaries state the result in the
cases of SL(2,Z), Γ0(5)

+ and Γ0(6)
+. In section 4 we state the conclusions from our numerical investigations, and

in section 5 we present various concluding remarks.

2. Preliminaries

2.1. Moonshine groups Γ0(N)+. In this subsection we will derive some important properties of moonshine groups
Γ0(N)+, for a square-free integer N . We will prove they have exactly one cusp. We then compute the constant
Fourier coefficient of the associated non-holomorphic Eisenstein series. Equivalently, we compute the scattering
determinant associated to the cusp. We refer to [17] and [21] for relevant background information.

The article [24] provides an in-depth study of the signature of Γ0(N)+ for any N , not necessarily square-free.
In particular, section 2 of [24] relates the number of cusps of Γ0(N)+ to the number of cusps of Γ0(N), which
can be computed using Proposition 1.43 of [28]. When N is square-free, one concludes that Γ0(N)+ has one cusp
for square-free N . For the convenience of the reader, we will provide an elementary proof of this result, which is
significant in our study.

Lemma 4. For every square-free integer N > 1, the surface XN has exactly one cusp, which can be taken to be at
i∞.

Proof. The cusps of XN are uniquely determined by parabolic elements of the group Γ0(N)+. In [12] it is proved
that all parabolic elements of Γ0(N)+ have integral entries. Therefore, the parabolic elements of Γ0(N)+ are also
parabolic elements of the congruence group Γ0(N). From pages 44–47 of [21], we easily deduce that the only possible

cusps of Γ0(N)+\H belong to the set {0, i∞} ∪ {1/v : v | N}. The point z = 0 is mapped to i∞ by involution
(

0 −1/
√
N√

N 0

)

∈ Γ0(N)+.

For an arbitrary v | N and w = N/v one has (w, v) = 1 since N is square-free. By Euclid’s algorithm, there
exists integers a and b such that −aw − bv = 1. Therefore, points z = 1/v are mapped to i∞ by transformation

1√
w

(

aw b
N −w

)

∈ Γ0(N)+.

This shows that all possible cusps of Γ0(N)+\H are Γ0(N)+-equivalent with i∞. Therefore Γ0(N)+\H has exactly
one cusp which can be taken to be i∞, as claimed. �
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Let ζ(s) denote the (classical) Riemann zeta function and let ξ(s) be the completed zeta function, defined by
ξ(s) := 1

2s(s− 1)π−s/2Γ(s/2)ζ(s).

Lemma 5. For a square-free, positive integer N = p1 · · · pr, the scattering determinant associated to the cusp of
XN at i∞ is given by the following expression

ϕN (s) =
s

s− 1

ξ(2s− 1)

ξ(2s)
·DN (s),(2)

where

DN (s) :=
1

Ns
·

r
∏

j=1

psj + pj

psj + 1
.

Proof. By Theorem 3.4 from [21] we write ϕN (s) =
√
πΓ(s− 1/2)Γ(s)−1HN (s), where HN (s) denotes the Dirichlet

series portion of the scattering determinant. Let CN denote the set of left-lower entries of matrices from Γ0(N)+.
Following pages 45–49 from [21], one sees that

HN (s) =
∑

c∈CN

c−2s
AN (c)

is well defined for Re(s) > 1, where AN (c) is equal to the number of distinct values of d modulo c such that c and
d are elements of the bottom row of the matrix from Γ0(N)+.

From the definition of Γ0(N)+, we easily deduce that CN = {(N/
√
v) · n : v | N,n ∈ N}.

For a fixed c = (N/
√
v) · n, with v | N and n ∈ N arbitrary, we can take e = v in the definition of Γ0(N)+ to

deduce that matrices from Γ0(N)+ with left lower entry c are given by
( √

va b/
√
v

N
v

√
vn

√
vd

)

for some integers a, b and d such that vad− (N/v)bn = 1. Therefore, the number AN ((N/
√
v) · n) is equal to the

number of distinct solutions d modulo (N/v)n of the equation vad − (N/v)bn = 1. Since N is square-free, this
equation has a solution if and only if (v, n) = 1 and (d, (N/v)n) = 1. In this case, the number of distinct solutions
d modulo (N/v)n is equal to ϕ((N/v)n). Here, ϕ denotes the Euler totient function and (p, q) denotes the greatest
common divisor of integers p and q.

Therefore, AN ((N/
√
v) · n) = 0 if (v, n) 6= 1 and AN ((N/

√
v) · n) = ϕ((N/v)n) if (v, n) = 1. Now, we may

conclude that

HN (s) =
∑

v|N

∑

(n,v)=1

ϕ
(

N
v n
)

(

N
v

√
vn
)2s .

The inner sum on the right-hand side of the above equation may be expressed using computations from [17],
specifically Lemmata 4.5 and 4.6 on page 535, showing that for positive integers A1, A2, B1 and B2 one has

(3)
∑

c0>0: (c0,(B1,A2)(A1,B2))=1

ϕ(c0 · (B1, B2)(A1, A2))

c2s0 (A1, A2)s(B1, B2)2s

=
ζ(2s− 1)

ζ(2s)
·

∏

p|(A1,A2)(B1,B2)

(

p− 1

p2s − 1

)

∏

p|(A2,B1)(A1,B2)

(

ps − p1−s

p2s − 1

)

;

in standard notation, p denotes a prime number, and an empty product is defined to be equal to 1.
Using formula (3) with A1 = v, A2 = 1; B1 = N/v, B2 = N and the principle of mathematical induction with

respect to the number r of distinct prime factors of N = p1 · · · pr, we deduce that

HN (s) =
ζ(2s− 1)

ζ(2s)
·
∑

v|N







∏

p|(N
v )

p− 1

p2s − 1

∏

p|v

ps − p1−s

p2s − 1






=

ζ(2s− 1)

ζ(2s)
· 1

Ns
·

r
∏

j=1

psj + pj

psj + 1
.

Therefore, the scattering matrix ϕN (s), for Re(s) > 1 is given by

ϕN (s) =
√
π
Γ(s− 1/2)

Γ(s)
· ζ(2s− 1)

ζ(2s)
·DN (s),

The statement of the lemma follows from the definition of the completed zeta function, which completes the proof
of the Lemma. �
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1/sqrt(5)
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0
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s5
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v2

v4
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v3

1/sqrt(6)

1/sqrt(18)
1/sqrt(12)

X6

Figure 1. Dirichlet fundamental domains of the moonshine groups Γ0(5)
+ (left), and Γ0(6)

+ (right).

Remark 6. The determinant of the scattering matrix for congruence subgroups has been computed by Hejhal [17]
and Huxley [20].

2.2. Moonshine groups Γ0(5)
+ and Γ0(6)

+. The moonshine group Γ0(5)
+ is generated by

g1 =

(

1 1
0 1

)

, g2 =
1√
5

(

5 −1
5 0

)

, g3 =
1√
5

(

5 −3
10 −5

)

,

and the moonshine group Γ0(6)
+ is generated by

g1 =

(

1 1
0 1

)

, g2 =
1√
6

(

6 −1
6 0

)

, g3 =
1√
3

(

3 −2
6 −3

)

,

see [13]. Fundamental domains of X5 = Γ0(5)+\H and X6 = Γ0(6)+\H are displayed in figure 1. For both, X5 and
X6, the sides are identified according to the pairings

g1 : s1 7→ s6, g2 : s2 7→ s5, g3 : s3 7→ s4.

Both X5 and X6 have a cusp at v1 = i∞, and each surface has three inequivalent elliptic fixed points which are all
of order 2. The elliptic fixed points are

g−1
1 g2 : v2 7→ v2 which is Γ-equivalent with v6 = g1v2,

g−1
2 g3 : v3 7→ v3 which is Γ-equivalent with v5 = g3v3,

and g3 : v4 7→ v4.

By the Gauss-Bonnet theorem, the volumes of the surfaces are Vol(X5) = π and Vol(X6) = π.

2.3. Strömbergsson’s pullback algorithm. In 2000, Strömbergsson [30] presented an algorithm for computing
the pullback of any point z ∈ H into the Dirichlet fundamental domain of a given cofinite Fuchsian group Γ with
prescribed generators. Strömbergsson’s algorithm uses only the action of generators of the group Γ applied to the
point z, and the algorithm is shown to converge after a finite number of iterations. Computation of the pullback of
a point z ∈ H to the Dirichlet fundamental domain of Γ is an ingredient in Hejhal’s algorithm for computing Maass
forms, recalled below. Therefore, Strömbergsson’s algorithm is an important part of our numerical computations
of eigenvalues of Maass forms on X5 and X6.

For the sake of completeness, we will recall the Strömbergsson algorithm in its full generality. Assume that Γ
is a cofinite Fuchsian group with generators g1, . . . , gn and set of elliptic fixed points E. Let d(z, w) denote the
hyperbolic distance between two points z and w in H. The associated Dirichlet fundamental domain is the set

F = {z ∈ H | d(p, z) ≤ d(p, γz) ∀γ ∈ Γ},
where p ∈ H − E is arbitrary. The given generators of Γ identify the sides of F. Strömbergsson’s algorithm for
computing the pullback of any point z ∈ H into F is the following.

Algorithm 7 (Pullback algorithm [30]). Choose any z ∈ H.

(1) Compute the 2n points g1z, g
−1
1 z, g2z, g

−1
2 z, . . . , g−1

n z. Let z′ be the one of these points which has the smallest
hyperbolic distance to p.

(2) If d(p, z′) < d(p, z), then replace z by z′, and repeat with step 1.
(3) If d(p, z′) ≥ d(p, z), then we know that z lies in F, hence z is the desired point, i.e. the pullback of the point

initially selected.
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Strömbergsson proved that his algorithm always finds the pullback within a finite number of operations [30].
We use z∗ = x∗ + iy∗ to denote the pullback of z = x+ iy.

2.4. Maass forms on Γ0(N)+. Let us recall the definition of Maass forms [25] and Maass cusp forms.

Definition 8. f : H → R is a Maass form on Γ0(N)+ associated to the eigenvalue λ if and only if

i) f ∈ C∞(H),
ii) f ∈ L2(XN ),
iii) −∆f(z) = λf(z),
iv) f(γz) = f(z) ∀γ ∈ Γ0(N)+.

Definition 9. f : H → R is a Maass cusp form on Γ0(N)+ if and only if

i) f is a Maass form on Γ0(N)+,
ii) limz→i∞ f(z) = 0.

For z = x + iy ∈ H, the Fourier expansion of a Maass cusp form associated to the eigenvalue λ = r2 + 1/4 is
given by

f(x+ iy) =
∑

n∈Z\{0}

any
1/2Kir(2π|n|y)e2πinx,(4)

where K stands for the K-Bessel function. Since a Maass form is real analytic, we have Re a−n = Re an and
Im a−n = − Im an.

As first proved in [25], the spectral coefficients an grow at most polynomially in n. The K-Bessel function decays
exponentially for large arguments, meaning

Kir(y) ∼
√

π

2y
e−y for y → ∞.

As a result, one can obtain a very good approximation of the expansion (4) by using finitely many terms, where
the number of terms considered depends on the desired accuracy of the approximation.

Let FN ≃ Γ0(N)+\H be the fundamental domain of Γ0(N)+. Let z∗ = x∗ + iy∗ be the Γ0(N)+-pullback of the
point z = x + iy into the fundamental domain, meaning there exists some γ ∈ Γ0(N)+ such that z∗ = γz and
z∗ ∈ FN . By the definition of automorphy, we have that f(z) = f(z∗).

Since the congruence group Γ0(N) is a subgroup of Γ0(N)+, we immediately deduce that if f is a Maass form
on Γ0(N)+, then f is a Maass form on Γ0(N).

2.5. Hecke operators. Let us recall the definition of Hecke operators. There are many references for this material,
one of which being [28].

Definition 10. Let f : H → R, and n a positive integer. The Hecke operator Tn is defined by

Tnf(z) =
1√
n

∑

ad=n
d>0

d−1
∑

b=0

f(
az + b

d
).

Theorem 11 ([1, 28]). Consider the congruence group Γ0(N). For all n such that (n,N) = 1, the Hecke operators
Tn are endomorphisms of the space of Maass cusp forms on Γ0(N). For all m and n with (m,N) = (n,N) = 1 and
all Maass cusp forms f(z) on Γ0(N), the Hecke operators have the following properties:

TmTn =
∑

d|(m,n)

Tmn

d2
,

Tn ◦∆ = ∆ ◦ Tn,

Tnf(z) = tnf(z),

where the eigenvalues tn of the Hecke operators Tn are related to the expansion coefficients an of the Maass cusp
form f(z) by the identity

an = a1tn.

For a proof of the theorem, see [1], [28], or [29].
Theorem 11 immediately implies that the Fourier coefficients of Maass cusp forms on Γ0(N) are multiplicative,

aman = a1
∑

d|(m,n)
d>0

amn

d2
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for all m and n with (m,N) = (n,N) = 1. This relation holds also for Maass cusp forms on Γ0(N)+ because, as
stated, the Maass cusp forms on Γ0(N)+ embed into the space of Maass cusp forms on Γ0(N).

2.6. Hejhal’s algorithm. We make use of Hejhal’s algorithm [18, 31] which itself employs the Fourier expansion
(4) of Maass cusp forms.

Hejhal’s algorithm is a finite system of linear equations whose non-trivial solutions are related to Maass cusp
forms. Hejhal’s algorithm is heuristic. By construction, a Maass cusp form always will solve the linear equations of
the algorithm to any desired level of accuracy, but the converse is not true. Not each solution of the finite system
of linear equations is a Maass cusp form. Only in the case when a solution is independent of the parameters will
the solution approximate a Maass cusp form. The crucial parameter in question is the choice of the value of y in
(8). The computation of Maass cusp forms therefore proceeds in two steps: Heuristic use of Hejhal’s algorithm,
followed by a verification of the numerical results.

Theoretically, Maass cusp forms can be rigorously certified as was shown in [9] in the example of the modular
group. Using the quasi-mode construction, Booker, Strömbergsson, and Venkatesh have certified the first 10 eigen-
values of SL(2,Z). The certification techniques can be adopted to other settings, such as to the moonshine groups.
Practically, however, we have to bear in mind that rigorously certifying eigenvalues requires immense computer
resources and it is infeasible to certify thousands of Maass cusp forms. For this reason, we just verify the numerical
results with a different, not fully rigorous method.

The verification is based on the following:

(1) Fix y.
(2) Find non-trivial solutions of Hejhal’s system of linear equations.
(3) Take a finite number of different values of y, and check whether the non-trivial solutions seem to be

independent of y.
(4) Take only the solutions which are seemingly independent of y and make a list of conjectured Maass cusp

forms.

In the end, there will be strong evidence, but not a proof, that the list of conjectured Maass cusp forms is indeed
a list of true Maass cusp forms. It is the experience of those who implement the algorithm that more than half of
the non-trivial solutions of Hejhal’s system of equations for a fixed value of y are not Maass cusp forms. Taking a
second choice for y immediately rules out almost all solutions which are not a Maass cusp form.

There remains the possibility that a solution could solve Hejhal’s linear system of equations for two independent
values of y whilest not being a Maass cusp form. We have further checked whether this has happened by employing
several independent values of y. Empirically, it turned out that as soon as some function solves Hejhal’s system of
equations for two independent values of y, it does so for any finite number of independent values of y also. And we
conjecture that it does so for any other value of y.

Further evidence comes from a second verification based on the Hecke operators. According to the Hecke
operators, the expansion coefficients of Maass forms are multiplicative. When solving Hejhal’s system of linear
equations, there is no reason that the coefficients of a solution are multiplicative, but only those solutions whose
coefficients are multiplicative can be Maass cusp forms.

Numerically, for each individual solution of Hejhal’s system of linear equations we have investigated and found
that a solution is seemingly independent of y if and only if the expansion coefficients of the solution are multiplicative.
This means both verifications agree in their answer.

Let us now recall Hejhal’s algorithm.
Since Γ0(N)+ is cofinite and has only one cusp at i∞, we can bound y from below. Allowing for a small numerical

error of at most [[ε]], where [[ε]] stands for |numerical error| . ε, due to the exponential decay of the K-Bessel
function in y, we can truncate the absolutely convergent Fourier expansion (4) such that

f(x+ iy) =
∑

0 6=|n|≤M(ε,r,y)

any
1/2Kir(2π|n|y)e2πinx + [[ε]].(5)

Solving for the spectral coefficients results in the equation

amy1/2Kir(2π|m|y) = 1

2Q

2Q
∑

j=1

f(
j

2Q
+ iy)e−2πim j

2Q + [[ε]],(6)

with 2Q > M +m.
By automorphy, any Maass cusp form can be approximated by

f(x+ iy) = f(x∗ + iy∗) =
∑

0 6=|n|≤M0

any
∗1/2Kir(2π|n|y∗)e2πinx

∗

+ [[ε]],(7)
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where y∗ is always larger than or equal to the height of the lowest point of the fundamental domain F, allowing us
to replace M(ε, r, y∗) by M0 = M(ε, r,minw∈F Imw).

Making use of the implicit automorphy by replacing f(x+ iy) in (6) with the right-hand side of (7) yields

amy1/2Kir(2π|m|y) = 1

2Q

2Q
∑

j=1

∑

0 6=|n|≤M0

any
∗
j
1/2Kir(2π|n|y∗j )e2πi(nx

∗
j−mxj) + [[2ε]], where xj + iyj =

j

2Q
+ iy,

(8)

for 0 6= |m| ≤ M(ε, r, y), which is the central identity of the algorithm.
We are looking for non-trivial solutions numerically such that (8) vanishes simultaneously for all 0 6= |m| ≤ M0

and 0 < y < minw∈F Imw. Each non-trivial solution gives a Maass cusp form whose eigenvalue reads λ = r2 +1/4.
We first solve (8) for all 0 6= |m| ≤ M0 numerically, but use a single value of y only. Then, we verify with a

finite number of values of y, whether we have found a non-trivial solution such that (8) vanishes simultaneously
for all 0 6= |m| ≤ M0 for each value of y. If the solution turns out to be seemingly independent of y, we finally
check whether the expansion coefficients an are multiplicative. If also the expansion coefficients turn out to be
multiplicative, we have verified that the numerically found solution of (8) is a Maass cusp form.

Let us now specify good parameter values for solving (8) numerically.

Algorithm 12 (Parameter values). Let λ̃ = t2+1/4 be close to an eigenvalue. Let the precision be given by ε > 0.

Then for λ near λ̃ we choose the values of the parameters as follows:

(1) Solve εKit(max{t, 1}) = Kit(2πM0 minw∈F Imw) in M0 with 2πM0 minw∈F Imw > max{t, 1}.
(2) Let y =

9

10

max{t, 1}
2πM0

.

(3) Solve εKit(max{t, 1}) = Kit(2πMy) in M with 2πMy > max{t, 1}, i.e. M =
minw∈F Imw

y
M0.

(4) Let Q be the smallest integer which is larger than M .
(5) Check whether (8) is well conditioned for the given y and all 0 6= |m| ≤ M0. If not, reduce y slightly and

repeat with 3.

For verifying that (8) vanishes simultaneously for all 0 6= |m| ≤ M0 for a finite number of values of y, we use

y =
max{t, 1}
2πM0

, and check whether (8) is well conditioned. If (8) is not well conditioned, we reduce y slightly.

The algorithm ensures that we never reduce y by a factor of 9/10 or more. Now we check whether (8) vanishes
simultaneously for all 0 6= |m| ≤ M0 for the given y. If (8) does vanish, we continue with a finite number of random

choices for the value of y ∈
( 9

10

max{t, 1}
2πM0

,min
w∈F

Imw
]

and check for each value of y whether (8) vanishes for all

0 6= |m| ≤ M0.

2.7. Turing’s method. Turing’s method is a method of verification that the list of eigenvalues of Maass cusp forms
is consecutive, once we have a suitable bound for the error term S(t) in “average” Weyl’s law N(t) = M(t) + S(t).
Roughly speaking, the method is the following. Assume that the error term S(t) in the “average” Weyl’s law for
the corresponding surface satisfies a bound of the type

El(T ) ≤ 〈S(T )〉 := 1

T

T
∫

0

S(t)dt ≤ Eu(T ),

where El(T ) → 0 and Eu(T ) → 0, as T → ∞. Then, we have the following test of consecutiveness [6, 34].
Step 1. Compute Nnum(T ); the number of numerically found eigenvalues in the interval 1/4 < λ ≤ T 2 +1/4 and

denote by

Snum(T ) := N
num(T )−M(T )

the difference between the number of numerically found eigenvalues and the average Weyl’s law.
Step 2. Add a “fake” eigenvalue λfake near the end of the list of eigenvalues and compute 〈Snum(T )〉. If the value

〈Snum(T )〉 exceeds Eu(T ), then the list of eigenvalues is consecutive in the interval 1/4 < λ ≤ λfake.

3. Average Weyl’s law for Γ0(N)+

In this section we prove Theorem 1.
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Let us recall that N = p1 · · · pr is a square-free positive integer, and define the function

αN (j, T ) := T log pj − ⌊T log pj
π

⌋π,

where, as previously stated, ⌊x⌋ denotes the greatest integer less than or equal to x. Let XN = Γ0(N)+\H be the
Riemann surface associated to the Fuchsian group Γ0(N)+, and let ZXN

denote the Selberg zeta function associated
to XN .

Let A ∈ (1, 3/2) and T > 1 be arbitrary real numbers, and let R(A) be the rectangle with vertices 1 − A − iT ,
A − iT , A + iT , 1 − A + iT . Without loss of generality, we assume that A and T are such that ZXN

(s) 6= 0 for
s ∈ ∂R(A). Formula (5.3) on p. 498 of [17] states the location of zeros and poles of the Selberg zeta function
ZXN

. In the notation of [17], one has that m = 0 and W = id. Furthermore, ϕN (1/2) = −1, hence, application
of Theorem 4.1 on p. 482 and formula (4.6) on p. 485 of [17] yields that, in the notation of formula (5.3), one has
A+B −K0 − C = 2g − 2. Therefore,

1

2πi

∫

∂R(A)

Z ′
XN

ZXN

(s)ds = 2NN [0 < rn ≤ T ] + 2QN [0 < Im(ρ) ≤ T ] + 2g − 2 + nN + 2m1/4,N ,

where QN [0 < Im(ρ) ≤ T ] denotes the number of zeros ρ of the scattering determinant ϕN with Im(ρ) ∈ (0, T ].
Let ∂P (A) denote the polygonal path joining points 1/2− iT , A− iT , A+ iT and 1/2+ iT . Using the functional

equation for the function DN (s) :=
Z′

XN

ZXN

(s), as in the proof of Theorem 2.28 on pp. 466–467 of [17], we can write

NN (T ) +QN [0 < Im(ρ) ≤ T ] = 1− g − nN

2
−m1/4,N +R1(T ) +

1

4πi

∫

∂P (A)

ϕ′
N

ϕN
(s)ds− 1

4πi

∫

∂P (A)

CN (s)ds,(9)

where

R1(T ) :=
1

2πi

∫

∂P (A)

DN (s)ds

and

(10) CN (s) = Vol(XN )(s− 1/2) tan(π(s− 1/2))−
l
∑

i=1

mi−1
∑

j=1

π

mi sin(πj/mi)

cosπ(2j/mi − 1)(s− 1/2)

cosπ(s− 1/2)

+ 2 log 2 +
Γ′

Γ
(1/2 + s) +

Γ′

Γ
(3/2− s).

By Theorem 2.29 on p. 468 of [17], we have the estimates

R1(T ) = O

(

T

log T

)

and

T
∫

0

R1(t)dt = O

(

T

log2 T

)

as T → ∞.(11)

To see that our function R1(T ) is equal to the function S(T ) in Theorem 2.29 of [17], we refer to Definition 2.27 on
page 465 of [17]. In addition, one can easily prove that S1(T ), in the notation of [17], coincides with the integral of
R1(T ). To do so, one simply integrates the formula for R1(T ), interchanges the order of integration, evaluates the
inside integral, and then integrates by parts. We choose to omit the details of these elementary calculations.

Since A ∈ (1, 3/2), the function CN (s) has no poles on the sides of the rectangle R1/2(A) which has vertices at
the points 1/2− iT , A− iT , A+ iT and 1/2 + iT . Furthermore, the only pole of CN (s) inside R1/2(A) is a simple
pole at s = 1. Since

lim
s→1

s− 1

cosπ(s− 1/2)
= − 1

π

we conclude that

Ress=1 CN (s) = −Vol(XN )

2π
+

l
∑

i=1

mi−1
∑

j=1

cosπ(j/mi − 1/2)

mi sin(πj/mi)
= −Vol(XN )

2π
+

l
∑

i=1

(

1− 1

mi

)

= 1− 2g.
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Therefore, by the calculus of residues, having in mind that CN (1/2 + it) = CN (1/2− it), for real and non-negative
t we get

1

4πi

∫

∂P (A)

CN (s)ds =
1

2
(1− 2g) +

1

2π

T
∫

0

CN (1/2 + it)dt.(12)

By substituting s = 1/2 + it into (10), we then have that

(13)

T
∫

0

CN (1/2 + it)dt = −Vol(XN )

T
∫

0

t tanh(πt)dt−
l
∑

i=1

π

mi

mi−1
∑

j=1

1

sin(πj/mi)

T
∫

0

coshπ(2j/mi − 1)t

coshπt
dt

+ 2Re





T
∫

0

Γ′

Γ
(1 + it)dt



+ 2T log 2 = I1(T )− I2(T ) + I3(T ) + 2T log 2,

where, in obvious notation, I1, I2 and I3 are defined to be the integrals in (13). We will now estimate each of these
integrals.

We write t tanh(πt) = t− 2t/(1 + exp(2πt)) to get the expression

I1(T ) = −Vol(XN )





T 2

2
− 2

∞
∫

0

tdt

1 + e2πt
+ 2g1(T )



 ,

where

g1(T ) =

∞
∫

T

tdt

1 + e2πt
.(14)

Quoting formula 3.411.3 from [16] with ν = 2 and µ = 2π, having in mind that ζ(2) = π2/6 and Γ(2) = 1, we get

I1(T ) = −Vol(XN )

(

T 2

2
− 1

24
+ 2g1(T )

)

.(15)

Similarly, by quoting formula 3.511.4 from [16] with a = π(2j/mi − 1) and b = π, we arrive at the equation

T
∫

0

coshπ(2j/mi − 1)t

coshπt
dt =

1

2 sin(πj/mi)
− g2(i, j, T )

where

g2(i, j, T ) :=

∞
∫

T

coshπ(2j/mi − 1)t

coshπt
dt.

Hence,

I2(T ) =
l
∑

i=1

π

mi

mi−1
∑

j=1

1

2 sin2(πj/mi)
− g2(T ),(16)

where we define

g2(T ) :=

l
∑

i=1

π

mi

mi−1
∑

j=1

g2(i, j, T )

sin(πj/mi)
.

Finally, quoting formula 8.344 from [16], which is essentially Stirling’s formula, with z = 1 + iT and n = 2 we
get that

1

2
I3(T ) = Re



−i

T
∫

0

(log Γ(1 + it))′dt



 = Im(log Γ(1 + iT )) = −T + T log T +
π

4
+ g3(T ),(17)

where

g3(T ) =
1

2
Im

(

log

(

1 +
1

iT

))

+Re

(

T log

(

1 +
1

iT

))

− B2T

2(1 + T 2)
+ Im(R3(T ))(18)
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and

|R3(T )| ≤
|B4|

12(1 + T 2)3/2 cos3( 12 arg(1 + iT ))
≤ |B4|

12
√
2T cos3(π/4)

=
1

180T
,(19)

for T ≥ 1. In the above computations, B2 = 1/6 and B4 = −1/30 are Bernoulli numbers.
Substituting (15), (16) and (17) into (13), and in turn using (12), we get the expression

(20)
1

4πi

∫

∂P (A)

CN (s)ds =
1

2
(1− 2g)− Vol(XN )

2π

(

T 2

2
− 1

24

)

−
l
∑

i=1

1

4mi

mi−1
∑

j=1

1

sin2(πj/mi)

+
1

π

(

T log T − T +
π

4

)

+
log 2

π
T − Vol(XN )

π
g1(T ) +

1

2π
g2(T ) +

1

π
g3(T ).

Using the evaluation (2) of the scattering determinant, we immediately deduce that, inside the rectangle R1/2(A)
the function ϕN (s) has a simple pole at s = 1 and zeros at points ρ. Therefore,

1

4πi

∫

∂P (A)

ϕ′
N

ϕN
(s)ds = QN [0 < Im(ρ) ≤ T ]− 1

2
+

1

4π

T
∫

−T

ϕ′
N

ϕN
(1/2 + it)dt.(21)

Combining (21) with (20) and (9) yields, for T ≥ 1,

(22) NN [0 < rn ≤ T ] = R1(T ) +
1

4π

T
∫

−T

ϕ′
N

ϕN
(1/2 + it)dt+

Vol(XN )

4π
T 2 − T log T

π
+

T

π
(1− log 2)

+
l
∑

i=1

1

4mi

mi−1
∑

j=1

1

sin2(πj/mi)
− Vol(XN )

48π
− 1

4
− nN

2
−m1/4,N +

(

Vol(XN )

π
g1(T )−

1

2π
g2(T )−

1

π
g3(T )

)

.

Taking logarithmic derivative of (2), we get

1

4π

T
∫

−T

ϕ′
N

ϕN
(1/2 + it)dt =

1

2π

T
∫

0

dt

(1/4) + t2
− 1

π
Re



−i

T
∫

0

(log ξ(1 + 2it))′dt



+
1

4π

T
∫

−T

D′
N

DN
(1/2 + it)dt.(23)

We now will compute the three integrals on the right-hand side of (23) separately. First,

1

2π

T
∫

0

dt

(1/4) + t2
=

1

2
− 1

π
arctan(1/T ).(24)

As for the second term on the right-hand side of (23), we begin by writing

− 1

π
Re



−i

T
∫

0

(log ξ(1 + 2it))′dt



 = − 1

π
Im(log ξ(1 + 2iT )− log ξ(1)).

From the definition of the function ξ, one has ξ(1) = ξ(0) = 1/2, so then

− 1

π
Re



−i

T
∫

0

(log ξ(1 + 2it))′dt



 = − 1

π
Im(log ξ(1 + 2iT )− log ξ(1))(25)

= −1− T log T

π
+

T

π
(1 + log π)− 1

π
g4(T )−

1

π
R2(T ),

where R2(T ) = Im(log ζ(1 + 2iT )) = Im(log(2iT ζ(1 + 2iT )))− π/2. From Stirling’s formula, we have that

g4(T ) = Im

(

log

(

1 +
1

2iT

))

+Re

(

T log

(

1 +
1

2iT

))

− 2B2T

(1 + 4T 2)
+ Im(R4(T )).(26)

The error term R4(T ) satisfies the inequality

|R4(T )| ≤
|B4|

12(1/4 + T 2)3/2 cos3( 12 arg(1/2 + iT ))
≤ 2

225T
,(27)

for all T ≥ 1, which we have deduced in a manner similar to (19).
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As for the third integral in (23), we begin by noting that the logarithmic derivative of the function DN is given
by

D′
N

DN
(s) = − logN −

r
∑

j=1

(pj − 1) log pj · psj
(psj + pj)(psj + 1)

.(28)

Furthermore, straightforward computations yield the formula

1

2π

T
∫

0

Re

[

(pj − 1)p
1/2+it
j

(p
1/2+it
j + pj)(p

1/2+it
j + 1)

]

dt =
pj − 1

2π

1

log pj(pj + 1)

T log pj
∫

0

du

1 + aj cosu
,(29)

where

aj = 2/(
√
pj + 1/

√
pj) = 1/ cosh((1/2) log(pj)).

With these preliminary computations, the third term on the right-hand side of (23) can be evaluated using (28)
and (29), namely we have the formula

1

4π

T
∫

−T

D′
N

DN
(1/2 + it)dt = − logN

2π
T − 1

2π

r
∑

j=1

pj − 1

pj + 1

T log pj
∫

0

du

1 + aj cosu
.(30)

We write

T log pj
∫

0

du

1 + aj cosu
=

⌊
T log pj

π
⌋−1

∑

k=0

π
∫

0

du

1 + aj cosu
+

T log pj−⌊
T log pj

π
⌋π

∫

0

du

1 + (−1)⌊
T log pj

π
⌋aj cosu

(31)

and use [16], formulas 3.613.1 with n = 0, a = aj and 2.553.3 with a = 1, b = (−1)⌊
T log pj

π
⌋aj (hence b2 < a2) to

evaluate the two integrals in (31). Substituting (31) into (30), and employing the definition αN (j, T ) := T log pj −
⌊T log pj

π ⌋π, we get the expression

1

4π

T
∫

−T

D′
N

DN
(1/2 + it)dt = − logN

π
T +

1

2π

r
∑

j=1

αN (j, T )− 1

π

r
∑

j=1

arctan







(√
pj − 1

√
pj + 1

)(−1)⌊
T log pj

π
⌋

tan

(

αN (j, T )

2

)






.

Now, by combining this last formula with (23), (24) and (25), we arrive at the expression

(32)
1

4π

T
∫

−T

ϕ′
N

ϕN
(1/2 + it)dt = −1

2
− T log T

π
+

T

π
(1 + log(π/N))− 1

π
R2(T ) +

1

2π

r
∑

j=1

αN (j, T )

− 1

π

r
∑

j=1

arctan







(√
pj − 1

√
pj + 1

)(−1)⌊
T log pj

π
⌋

tan

(

αN (j, T )

2

)






− 1

π
(arctan(1/T ) + g4(T )) .

Substituting (32) into (22), we immediately see that

NN [0 < rn ≤ T ]−MN (T ) = SN (T ),

where

MN (T ) =
Vol(XN )

4π
T 2 − 2T log T

π
+

T

π
(2 + log(π/2N)) +

l
∑

i=1

1

4mi

mi−1
∑

j=1

1

sin2(πj/mi)
− Vol(XN )

48π
−m1/4,N

− 3

4
− nN

2
+

1

2π

r
∑

j=1

αN (j, T )− 1

π

r
∑

j=1

arctan







(√
pj − 1

√
pj + 1

)(−1)⌊
T log pj

π
⌋

tan

(

αN (j, T )

2

)






+GN (T ),

with

GN (T ) = − 1

2π
(−2Vol(XN )g1(T ) + g2(T ) + 2g3(T ) + 2g4(T ) + 2 arctan(1/T ))
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and

SN (T ) = R1(T )−
1

π
(Im(log(2iT ζ(1 + 2iT )))− π/2).(33)

At this time, it remains to derive bounds for the error terms GN (T ) and SN (T ). From the definition (14) of the
function g1(T ) we deduce that

|g1(T )| ≤
∞
∫

T

te−2πtdt =
e−2πT

2π
(T +

1

2π
).

For an arbitrary positive constant A > 0, the function f(x) = x2 exp(A − Ax) is decreasing for x > 2/A; hence, if
A > 2, then f(x) ≤ f(1) = 1 for all x ≥ 1. Therefore, for A > 2, one gets exp(−Ax) ≤ exp(−A)x−2 for all x ≥ 1.
Taking A = 2π > 2, we obtain the bound

|g1(T )| ≤
e−2πT

2π
(T +

1

2π
) ≤ 2π + 1

4π2 exp(2π)
· 1
T
,(34)

for all T ≥ 1. Since u exp(1− u) ≤ 1 for all u > 0, we get the inequalities

|g2(i, j, T )| ≤
2

π

∞
∫

πT

exp((|(2j/mi)− 1| − 1)u)du =
2

π

exp((|(2j/mi)− 1| − 1)πT )

(1− |(2j/mi)− 1|) ≤ 2

(1− |(2j/mi)− 1|)2 π2e
· 1
T
.

For j ∈ {1, . . . ,mi − 1} one has 1− |(2j/mi)− 1| ≥ 2/mi, hence

(35) |g2(T )| ≤
l
∑

i=1

1

mi

mi−1
∑

j=1

2

e · sin(πj/mi) (1− |(2j/mi)− 1|)2 πT
≤

l
∑

i=1

mi

2eπ

mi−1
∑

j=1

1

sin(πj/mi)
· 1
T
,

for all T > 1.
In order to obtain bounds for g3 and g4, we need to estimate Im

(

log
(

1 + a
iT

))

and Re
(

T log
(

1 + a
iT

))

for a = 1
and a = 1/2. When T > 1 one has |a/iT | < 1, so then

log
(

1 +
a

iT

)

=

∞
∑

k=1

(−1)k−1

k

( a

iT

)k

.

Therefore,

∣

∣

∣Im
(

log
(

1 +
a

iT

))∣

∣

∣ =

∣

∣

∣

∣

∣

∞
∑

k=1

(−1)k

2k − 1

( a

T

)2k−1
∣

∣

∣

∣

∣

≤ a

T
.

Similarly,

∣

∣

∣Re
(

T log
(

1 +
a

iT

))∣

∣

∣ =

∣

∣

∣

∣

∣

T

∞
∑

k=1

(−1)k−1

2k

( a

T

)2k
∣

∣

∣

∣

∣

≤ a2

2T
.

Now, from (18), (19), (26) and (27) we conclude that for T > 1

|g3(T )| ≤
1

2T
+

1

2T
+

1

12T
+

1

180T
=

49

45T
(36)

and

|g4(T )| ≤
1

2T
+

1

8T
+

1

12T
+

2

225T
=

1291

1800T
.(37)

Finally, for T ≥ 1 one has arctan(1/T ) ≤ 1/T , hence substituting (34), (35), (36) and (37) into the definition of
GN (T ), we arrive at

|GN (T )| ≤ 1

2πT





Vol(XN )(2π + 1)

2π2 exp(2π)
+

l
∑

i=1

mi

2eπ

mi−1
∑

j=1

1

sin(πj/mi)
+

5051

900



 ,

which is the inequality stated in (1).
By (11), the proof of the theorem will be complete once we show that

T
∫

0

(Im(log(2itζ(1 + 2it)))− π/2)dt = O

(

T

log2 T

)

as T → ∞.
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In fact, we will prove the stronger bound

T
∫

0

(Im(log(2itζ(1 + 2it)))− π/2)dt = O(log T ) as T → ∞.(38)

By the changes of variables s = 1 + 2it, we can write

T
∫

0

log(2itζ(1 + 2it))dt =
1

2i

1+2iT
∫

1

log((s− 1)ζ(s))ds.

The function log((s− 1)ζ(s)) is holomorphic in the closed rectangle with vertices 1, A, A+2iT and 1+ 2iT , so, by
Cauchy’s theorem, we have that

(39)

T
∫

0

log(2itζ(1 + 2it))dt =
1

2i

A
∫

1

log((σ − 1)ζ(σ))dσ +

T
∫

0

log((A− 1 + 2it)ζ(A+ 2it))dt

+
1

2i

1
∫

A

log((σ + 2iT − 1)ζ(σ + 2iT ))dσ = O(1) + J1(T ) + J2(T ) as T → ∞.

It remains to estimate Im(J1(T )) and Im(J2(T )). Trivially, one has

Im(J1(T )) = Im





T
∫

0

log

(

2it

(

1 +
A− 1

2it

))



+ Im





T
∫

0

log ζ(A+ 2it)



 .

It is elementary to show that Im
(

log
(

2it
(

1 + A−1
2it

)))

= π/2+O(t−2) for t ≫ 1. The Dirichlet series representation
of log ζ(A+ 2it), is absolutely and uniformly convergent in the range under consideration since A > 1. Therefore,
we get the bounds

Im(J1(T )) =
π

2
T +O(1) +

∞
∑

n=1

Λ(n)

nA log2 n
Im

(

1− n−2iT

2i

)

=
π

2
T +O(1) as T → ∞,(40)

where Λ(n) is the von Mangoldt function. Combining (40) with (39), we have that

T
∫

0

(Im(log(2itζ(1 + 2it)))− π/2)dt = Im(J2(T )) +O(1) as T → ∞.

In order to prove (38), we need to show that Im(J2(T )) = O(log T ) as T → ∞. The proof of this bound is
straightforward. Simply combine the elementary bound log(σ + 2iT − 1) = O(log T ) together with the estimate
log ζ(σ + 2iT ) = O(log T ) which holds uniformly for σ ∈ [1, A], which we quote from Theorem 3.5 in [33].

With all this, the proof of Theorem 1 is complete.

Remark 13. In order to prove Corollary 2, one follows the analysis above up to equation (33). At that point, one
uses the first part of Theorem 2.29 on page 468 of [17] to bound the first term and Theorem 3.5 in [33] to bound
the second term.

We now state three special cases of Theorem 1; first when Γ = PSL(2,Z), next when Γ = Γ0(5)
+, and finally

when Γ = Γ0(6)
+.

Corollary 14 (Average Weyl’s law for PSL(2,Z)).

N1[0 < rn ≤ T ]−M1(T ) = S1(T ),

where

M1(T ) =
1

12
T 2 − 2T log T

π
+

T

π
(2 + log(π/2))− 131

144
+G1(T ),

with

|G1(T )| ≤
1

2π

(

2π + 1 + 6(1 + 2
√
3) exp(2π − 1)

6π exp(2π)
+

5051

900

)

1

T
<

1

T
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and
T
∫

0

S1(t)dt = O

(

T

log2 T

)

, as T → ∞.

Proof. We apply Theorem 1 with N = 1. In this case, D1(s) ≡ 1 and the signature of the group is (0; 2, 3; 1).
Furthermore, λ1 > 1/4, by Theorem 11.4 from [21], hence n1 = 1 and m1/4,N = 0. �

Remark 15. We have been informed that in [8], the authors prove an average Weyl’s law for SL(2,Z) together
with effective bounds for the integral of S1, using a trace formula approach.

Corollary 16 (Average Weyl’s law for Γ0(5)
+). Let α5(T ) = T log 5−

⌊

T log 5
π

⌋

π. Then,

N5[0 < rn ≤ T ]−M5(T ) = S5(T ),

where

M5(T ) =
T 2

4
− 2T log T

π
+

T

π
(2 + log

( π

10

)

)− 43

48
+

α5(T )

2π

− 1

π
arctan







(√
5− 1√
5 + 1

)(−1)⌊
T log 5

π
⌋

tan

(

α5(T )

2

)






+G5(T ),

with

|G5(T )| ≤
1

2π

(

2π + 1 + 6 exp(2π − 1)

2π exp(2π)
+

5051

900

)

1

T
<

1

T

and
T
∫

0

S5(t)dt = O

(

T

log2 T

)

, as T → ∞.

Proof. We apply Theorem 1 with N = 5. In this case, the signature of the group is (0; 2, 2, 2; 1). Also, the only
eigenvalue ≤ 1/4 is λ0 = 0, by Corollary 11.5 from [21] and the embedding of Maass forms on Γ0(5)

+ into Γ0(5). �

Corollary 17 (Average Weyl’s law for Γ0(6)
+). Let α6(T ) = T log 6−

⌊

T log 2
π

⌋

π −
⌊

T log 3
π

⌋

π. Then,

N6[0 < rn ≤ T ]−M6(T ) = S6(T ),

where

M6(T ) =
T 2

4
− 2T log T

π
+

T

π
(2 + log

( π

12

)

)− 43

48
+

α6(T )

2π
+G6(T )

− 1

π
arctan







(√
2− 1√
2 + 1

)(−1)⌊
T log 2

π
⌋

tan
1

2

(

T log 2−
⌊

T log 2

π

⌋

π

)







− 1

π
arctan







(√
3− 1√
3 + 1

)(−1)⌊
T log 3

π
⌋

tan
1

2

(

T log 3−
⌊

T log 3

π

⌋

π

)






,

with

|G6(T )| ≤
1

2π

(

2π + 1 + 6 exp(2π − 1)

2π exp(2π)
+

5051

900

)

1

T
<

1

T

and
T
∫

0

S6(t)dt = O

(

T

log2 T

)

, as T → ∞.

Proof. The proof is a straightforward corollary of Theorem 1 and basic properties of Γ0(6)
+. �
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n λn for Γ0(5)
+ λn for Γ0(6)

+

1 17.32676 20.93844
2 24.23291 26.24717
3 36.89998 37.71537
4 40.58784 40.01593
5 46.81219 52.39092
...

...
...

3555 15623.315 15649.988
3556 15623.860 15654.937
3557 15625.094 15665.201
...

...
...

12470 52875.046
12471 52876.076
12472 52879.257
12473 52894.324
12474 52899.011

...
...

Table 1. Eigenvalues of the Maass cusp forms on Γ0(5)
+ in the interval 0 < λ < 1252 + 1/4 and

on Γ0(6)
+ in the interval 0 < λ < 2302 + 1/4.

4. Numerical computations

In this section we present numerical results on computations and statistical distribution of large sets of consecutive
eigenvalues of Maass cusp forms on X5 and X6.

4.1. Computation of consecutive list of eigenvalues of Maass forms on X5 and X6. A systematic search [32]
for Maass cusp forms on Γ0(5)

+ in the interval 0 < λ < 1252+1/4 and on Γ0(6)
+ in the interval 0 < λ < 2302+1/4

results in 3557 and 12474 Maass forms, respectively. A few eigenvalues are listed in Table 1. At some point, the
entire list of eigenvalues will be made publicly available. Prior to that time, the list will be made available to anyone
upon request.

We note that the lowest point of the fundamental domain of the surafce X6 has a larger imaginary part than
that for X5. The height y of the lowest point has an influence on how many terms are to be considered in the
Fourier expansion (5). This is the reason, why the computations were much faster on X6 than on X5.

The algorithm for computing eigenvalues is described in detail in [32]. The main ingredients are the following.

First, using a set of trial values λ̃1, . . . , λ̃ν , we linearize Hejhal’s system of equations (8) in the eigenvalue λ around

each trial value λ̃. For each λ̃, we obtain a matrix eigenvalue equation which is then solved numerically. In this
step, the eigenvalues λ of Maass cusp forms are related to the matrix eigenvalues via perturbation theory. As a
result, one obtains a preliminary list of potential eigenvalues of Maass cusp forms. For each potential eigenvalue,
we solve (8) for 0 6= |m| ≤ M0 and check whether the corresponding non-trivial solution is indeed a Maass cusp
form.

The check is described in section 2.6. This results in a verified list of Maass cusp forms. Finally, we need to
check and verify that the list of Maass cusp forms is consecutive. As stated, this check is performed using ”average”
Weyl’s law and Turing’s method. If it turns out that eigenvalues are missing, we search for them, using additional
trial values λ̃, until our list of Maass cusp forms becomes consecutive, as indicated by Turing’s method.

We do not have rigorous Turing bounds, yet. Therefore, we use Turing’s method heuristically. In light of the data
obtained, and presented in various figures in this section, let us again discuss Turing’s method, this time keeping
the figures in mind.

Let Nnum
N (T ) count the number of numerically found eigenvalues in the interval 1/4 < λ ≤ T 2 + 1/4. The

difference between the number of numerically found eigenvalues and the average Weyl’s law

Snum
N (T ) := N

num
N (T )−MN (T )

is a fluctuating function. Its mean comes close to a non-positive integer whose absolute value counts the number of
solutions which have been overlooked.
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Figure 2. The fluctuations Snum
5 (T ) for Γ0(5)
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Figure 3. The fluctuations Snum
6 (T ) for Γ0(6)
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Figure 4. The mean 〈Snum
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Figure 5. The mean 〈Snum
6 (T )〉.
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Figure 6. Mean 〈Snum
6 (T )〉, with the eigenvalue λ9367 = 200.03592 + 1/4 removed.
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Figure 7. Mean 〈Snum
6 (T )〉, with the fake “eigenvalue” λ = 2002 + 1/4 inserted.

Figures 2 and 3 show the fluctuations Snum
N (T ). In figures 4 and 5, the mean

〈Snum
N (T )〉 := 1

T

T
∫

0

Snum
N (t)dt

tends to zero for large T which indicates that all solutions have been found numerically.
If a solution would have been overlooked, the graph would deviate from zero quite significantly. A demonstration

is given in figure 6, where we have intentionally removed the eigenvalue λ9367 = 200.03592 + 1/4, whereas in figure
7, we have intentionally inserted a fake “eigenvalue” at λ = 2002 + 1/4.

If we would have an explicit and efficient upper bound on
T
∫

0

SN (t)dt, we could apply Turing’s method to prove,

not just verify, that the numerically found lists of eigenvalues are consecutive. The proof would be to add a fake
“eigenvalue” near the end of each list of eigenvalues and show that with this extra “eigenvalue” 〈Snum

N (T )〉 would
exceed the upper bound, as explained in section 2.7, see also [34, 6, 8]. In our notation, what is needed is to explicitly
evaluate the implied constant in the average of SN (T ). The algorithm in [14] and [22] does, in fact provide such a
bound, but the explicit value is somewhat large, hence impractical.

Remark 18. For computing Snum
N (T ) we need to evaluate MN (T ) which includes the term GN (T ). Actually, we

do not know the exact value of GN (T ). According to the bound (1), we can safely neglect GN (T ) in the evaluation
of Snum

N (T ) for T large.
By Theorem 1, MN (T ) includes terms which depend on αN (j, T ) and on arctan(. . . ). For evaluating the average

〈Snum
N (T )〉, we need to integrate over these terms. The sum of the αN (j, T ) and the arctan(. . . ) dependent terms

is periodic. We perform the integration by expanding the periodic contribution into a Fourier series, integrate the
individual Fourier terms, and then sum up numerically.

4.2. Nearest neighbour spacing statistics. Concerning the statistical properties of the eigenvalues, we must
emphasize that the conjectured properties depend on the choice of the surface X. Depending on whether the
corresponding classical system of a point particle that moves freely on the surface is integrable or not, there are
some generally accepted conjectures about the nearest neighbour spacing distributions of the eigenvalues in the
limit λ → ∞.

Whenever we examine the distribution of the eigenvalues we consider the values on the scale of the mean level
spacings.
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Figure 8. Nearest neighbour spacing distributions P (s) for the moonshine groups Γ0(5)
+ (left),

and Γ0(6)
+ (right), which come close the Poisson distribution PPoisson(s) = e−s.

Conjecture 19 ([2]). If the corresponding classical system is integrable, the eigenvalues behave like independent
random variables and the distribution of the nearest neighbour spacings is in the limit λ → ∞ close to a Poisson
distribution, i.e. there is no level repulsion.

Conjecture 20 ([4]). If the corresponding classical system is chaotic, the eigenvalues are distributed like the
eigenvalues of hermitian random matrices. The corresponding ensembles depend only on the symmetries of the
system:

• For chaotic systems without time-reversal invariance the distribution of the eigenvalues approaches in the
limit λ → ∞ the distribution of the Gaussian Unitary Ensemble (GUE) which is characterised by a quadratic
level repulsion.

• For chaotic systems with time-reversal invariance and integer spin the distribution of the eigenvalues ap-
proaches in the limit λ → ∞ the distribution of the Gaussian Orthogonal Ensemble (GOE) which is char-
acterised by a linear level repulsion.

• For chaotic systems with time-reversal invariance and half-integer spin the distribution of the eigenvalues
approaches in the limit λ → ∞ the distribution of the Gaussian Symplectic Ensemble (GSE) which is
characterised by a quartic level repulsion.

These conjectures are very well confirmed by numerical calculations, but several exceptions are known.

Exception 21. The harmonic oscillator is classically integrable, but its spectrum is equidistant.

Exception 22. The geodesic motion on surfaces with constant negative curvature provides a prime example for
classical chaos. In some cases, however, the nearest neighbour distribution of the eigenvalues of the Laplacian on
these surfaces appears to be Poissonian.

With our lists of consecutive eigenvalues, we can examine the nearest neighbour spacings. We unfold the spectrum

un = MN (rn) with λn = r2n + 1/4,

in order to obtain rescaled eigenvalues un with a unit mean density. Then

sn = un+1 − un

defines the sequence of nearest neighbour level spacings which has a mean value of 1 as n → ∞. For the moonshine
groups Γ0(5)

+ and Γ0(6)
+ we find that the spacing distributions come close to that of a Poisson random process,

PPoisson(s) = e−s,

see figure 8, as opposed to that of a Gaussian orthogonal ensemble of random matrix theory,

PGOE(s) ≃
π

2
se−

π
2
s2 .

The spacing distributions are in accordance with Conjecture 3.
One might wonder whether eigenvalue spacings are correlated. For this we investigated joint eigenvalue spacing

distributions,

P (s, s′)dsds′ = P
(

(sn, sn+1) ∈ [s, s+ ds)× [s′, s′ + ds′)
)

.



20 J. JORGENSON, L. SMAJLOVIĆ, AND H. THEN
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Figure 9. Joint nearest neighbour spacing distribution P (s, s′) for Γ0(5)
+ which comes close to

a product of Poisson distributions PPoisson(s)PPoisson(s
′).
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Figure 10. Joint nearest neighbour spacing distribution P (s, s′) for Γ0(6)
+ which comes close to

the product of Poisson distributions PPoisson(s)PPoisson(s
′).

For Γ0(5)
+ and Γ0(6)

+, we find that the joint eigenvalue spacing distributions factor into a product of Poisson
distributions,

P (s, s′) = PPoisson(s)PPoisson(s
′),

see figures 9 and 10. Heuristically, the spacings between rescaled eigenvalues are uncorrelated which implies that
the eigenvalues are uncorrelated as well.
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5. Concluding remarks

5.1. Topological equivalence versus Weyl’s law. The groups Γ0(5)
+ and Γ0(6)

+, which were the main focus
of investigation in our paper, are topologically equivalent, have different Weyl’s law, yet the two sets of eigenvalues
seem to have the same spacing distributions.

From the tables presented in [12], one can find other examples of such groups. In the case when the genus g is
zero, we have the following examples of topologically equivalent groups with different “classical” Weyl’s laws and
“average” Weyl’s law.

(1) For N ∈ {11, 14, 15}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2; 1),

(2) For N ∈ {17, 22, 30}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2, 2; 1),

(3) For N ∈ {23, 33, 42}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2, 2, 2; 1),

(4) For N ∈ {29, 38}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2, 2, 2, 2; 1),

(5) For N ∈ {46, 51, 55, 66, 70}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2, 2, 2, 2, 2; 1).

There are also examples of the groups with genus g = 1, such as N ∈ {83, 123, 143, 182, 195} each of which has
signature (1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2; 1) and whose Weyl’s law asymptotics differ in the T term.

This empirical investigation yields to an interesting question: For a given positive integer k, is it possible to find
k topologically equivalent surfaces arising from moonshine groups having different Weyl’s laws?

5.2. Weyl asymptotics versus nearest neighbour statistics. Generally speaking, discrete eigenvalues of the
Laplacian, or, equivalently, positive imaginary parts of zeros of the corresponding Selberg zeta function on the critical
line, are increasing sequences of numbers, and the associated Weyl’s law is an approximate counting function of
such sequences. The results in section 4.2 are related to numerical computation of the nearest neighbour statistics
of eigenvalues of Maass cusp forms on Γ0(N)+\H, for N = 5 and N = 6. We have seen, empirically, that the
nearest neighbour statistics for the eigenvalues of Maass cusp forms seem to be each equal even though the Weyl’s
laws are different. One may argue that the reason for this is that the Weyl’s law differs in the T term, while the
first two lead terms are the same in the two cases we considered.

Therefore, a natural question which arises is to what extent does the nearest neighbour statistics of an increasing
sequences of numbers depend on its average counting function. The answer to this question is presented in the
following example.

Example 23. Let {xn}n∈N be an increasing sequence of numbers having a mean density of 1, by which we mean

lim
T→∞

1

T
#{xn ≤ T} = 1.

Let m(t) be an increasing function, defined for t > 0, such that m(0) ≥ 1/2. (In the Weyl’s law case, m(t) =
a0t

2 + a1t log t + a2t + a3 + . . ., for some positive number a0.) Let us define a sequence of numbers λn by letting
λn := m−1(xn − 1

2 ), where m−1 denotes the inverse function of m. Let N(t) be the counting function

N(t) := #{λn ≤ t},

and let the Weyl asymptotics M(t) be a smooth approximation to N(t) such that

lim
T→∞

1

T

T
∫

0

(N(t)−M(t))dt = 0.

The unfolded spectrum {un} is defined by un := m(λn). Trivially, un = m(λn) = m(m−1(xn − 1
2 )) = xn − 1

2 , for
all n ∈ N hence un+1 − un = xn+1 − xn, so the nearest neighbour statistics of the unfolded spectrum {un} equals
the nearest neighbour statistics of the initial sequence {xn}.

We are free to distribute the sequence of increasing numbers {xn} such that the nearest neighbour statistics
of {xn} coincides with our favorite distribution of non-negative numbers. We are also free to choose the smooth
increasing function m(t), and hence the Weyl asymptotics arbitrarily. Since {xn} and m(t) can be chosen indepen-
dently of each other, we conclude that the nearest neighbour statistics of the unfolded spectrum {un} is completely
independent of the Weyl asymptotics.

Therefore, all the analytic results on the Weyl asymptotics are completely independent of the numerical results
on the nearest neighbour statistics. Neither carries any information of the other, regardless of how many expansion
terms we include in the Weyl asymptotics. Analytics and numerics complement each other.
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