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ABSTRACT. There are a number of fundamental results in the study of holomorphic function theory associated to the
discrete group PSL(2,Z) including the following statements: The ring of holomorphic modular forms is generated
by the holomorphic Eisenstein series of weight four and six, denoted by E4 and Ejg; the smallest weight cusp form
A has weight twelve and can be written as a polynomial in F4 and Fg; and the Hauptmodul j can be written as
a multiple of Ez divided by A. The goal of the present article is to seek generalizations of these results to some
other genus zero arithmetic groups I'o(IN)1 with square-free level N, which are related to ”Monstrous moonshine
conjectures”. Certain aspects of our results are generated from extensive computer analysis; as a result, many of the
space-consuming results are made available on a publicly accessible web site. However, we do present in this article
specific results for certain low level groups.

1. INTRODUCTION AND STATEMENT OF RESULTS

Consider the discrete group PSL(2,Z) which acts on the upper half plane H. The quotient space PSL(2,Z)\H
has one cusp which can be taken to be at ico. Let I'y, denote the stabilizer subgroup for the cusp at ico, which
consists of isometries

(CCL Z) € PSL(2,7)

with ¢ = 0. For every integer k > 2, the holomorphic Eisenstein series Fo(z) is defined by the absolutely convergent
sum

L — 92k _ * *
Eor(z2) = Z (cz +d) where v = (c d)'
€T o\ PSL(2,2)
There is an abundance of important and classical formulae which can be wound back to the holomorphic Eisenstein
series Foj. For example, if one defines

Gaox(2) = Z (nz + m)f%,
(n,m)€Z2\{(0,0)}

then Faop(z) = Gar(z)/2¢(2k) where ((s) is the Riemann zeta function. If we set go = 60G4 and g3 = 140Gg, the
modular discriminant

A(z) = (271‘)1262”Z H (1 _ e2m‘nz)24
can be written as n=
(1) A(2) = g3(2) = 2763(2) = 1ooc (F(2) - E3(2).

The function A is a weight twelve cusp form with respect to PSL(2,Z), meaning it vanishes as z approaches ioco.
It can be shown that no smaller weight cusp form exists. Furthermore, A is related to the algebraic discriminant
of the cubic equation y? = 422 — gox — g3, in the complex projective coordinates [z,y, 1], which defines an elliptic
curve associated to the modular parameter z.

All higher weight modular forms associated to PSL(2,Z), including Eisenstein series, can be written in terms of
E4(z) and Eg(z). For example, the formulae Fg(z) = E%(2), E19(z) = E4(2)Es(z) and

691E15(2) = 441F,(2)® + 250E¢(2)?,
are just the beginning of the never ending list of interesting relations which one can write.
Whereas the content of the above discussion is classical, there is a very modern component. The function
1728 E3(2)
(2) i(2) = g
Ej(2) — E§(2)
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is a weight zero modular form on PSL(2,Z)\H which can be viewed as the biholomorphic function that maps
PSL(2,Z)\H onto the Riemann sphere P!. If we set ¢ = ¢2™**, then one can expand j(z) as a function of ¢, namely
one has

1
(3) j(z) = p + 744 + 196884q + 21493760¢> + O(¢®) as ¢ — 0.

In the 1970’s, the coefficients in (3) were observed to be related to the sizes of the irreducible representations of the
largest sporadic simple group, which is now known as “the monster”. The observations were made precise through
the “Monstrous moonshine conjectures”, some of which are proven in the celebrated work by Borcherds. We refer
the interested reader to [5] for a thorough account of the underlying mathematics and physics surrounding the
moonshine conjectures as well as the mathematical history associated to j(z).

Setting to the side the important formulae themselves, one can summarize the above discussion as the three
following points. First, the ring of holomorphic modular forms associated to PSL(2,Z) is generated by F4 and Eg.
Second, the smallest weight cusp form A has weight twelve, hence can be written as a polynomial in E4 and Fj.
Third, the Hauptmodul j is equal to a multiple of Ej divided by A, hence is a rational function in £, and FEg.

The goal of this article is to seek generalizations of the above three statements to certain other arithmetic groups
related to the ”Monstrous moonshine conjectures”. Specifically, for any positive integer N, let

(4) FO(N)"’:{e_l/Q(i Z)ESL(Q,R): ad—bc=ce, a,b,c,d,ec€Z, e|N,e|a,e|d,N|c}

and let To(N)* = To(N)*/{£1d}, where Id denotes the identity matrix. Observe that PSL(2, ,2) =T To(1)*. Tt has
been shown that there are 43 square-free integers N > 1 such that the quotient space Xy 1= FO( )T\H has genus
zero (see [3]). Each group has one cusp, which we can always choose to be at ico. As stated in the title, the aim of
this paper is to present results in the study of the holomorphic function theory associated to these 43 spaces.

Let
( 271'1,2/24 H 27mnz

denote the Dedekind eta function. For any square-free N assume that N has r prime factors, and let lem(-, -) denote
the least common multiple function. Let o(/N) equal the sum of divisors of N. It was proven in [7] that the function

LN
[Ine2)] .
v|N

where
24

(24,0(N )))
is a weight kx = 2"~/ modular form on I'¢(/N)*, vanishing at the cusp ioo only. For reasons discussed in [7], we

refer to Ay as the Kronecker limit function on To(N)+.
The main results of the present paper are the following statements which hold true for each square-free N
provided that Xy has genus zero.

In = 2" 1em (4, 9r-1

(1) There is an explicitly computed integer My such that A]\N/[N is equal to a polynomial QN in holomorphic
Eisenstein series associated to 'o(N)*;

(2) The Hauptmodul jxn associated to Ty (N)Jr is equal to a rational function whose numerator is a polynomial
Py in holomorphic Eisenstein series and whose denominator is A%IN,

(8) The polynomials Py and Qn are explicitly computed; hence, we determine, for each N, a finite set TN of
holomorphic FEisenstein series such that any meromorphic form with at most polynomial growth at ico can
be expressed as a rational function involving elements of TW) .

Points 1 and 2 are direct generalizations of the formulae (1) and (2). Point 3 is a weak generalization of the result
that the ring of holomorphic modular forms associated to PSL(2,Z) is generated by the holomorphic Eisenstein
series of weight four and six. For certain small levels, we are able to compute generators of the ring of holomorphic
forms; however, for general N, and for future investigations we plan to undertake, we are content with point 3 as
stated.

The present article is organized as follows. In section 2 we establish notation and cite appropriate background
material. In particular, we recall the Kronecker limit formula associated to the non-parabolic Eisenstein series
on Xy = Io(N)FT\H and an computer algorithm of [7]. In section 3, we prove some basic results regarding low
weight modular forms for any level N > 1. In section 4, we present results regarding the ring of holomorphic forms
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for certain small levels. In section 5, we present a variant of the algorithm of [7] from which we prove that for
every square-free N, provided that X has genus zero, there is an integer My such that AANM can be written as a
polynomial in holomorphic Eisenstein series. Let jny denote the biholomorphic map from X to the Riemann sphere
P! which maps ico to zero. The algorithm described in section 5 allows us to prove that j NA%N can be written
as a polynomial in holomorpic Eisenstein series. The data provided by the algorithm is presented in Table 1, as is
a comparison of the results of the original algorithm of [7] and the modified variant thereof. From the algorithm
developed in this paper, we are able to determine for each level N a set of holomorphic Eisenstein series which
generate T(N) | the ring of holomorphic modular forms associated to X; this information is given in Table 2. It
is important to note that the entries in Table 2 may not be a minimal set of generators, meaning that for each N
there may exist further relations amongst the sets listed in Table 2.

As N grows, so does the complexity of the formulae for Ay and jy. For example, when N = 17, our algorithm
shows that the five holomorphic Eisenstein series of weights four through twelve generate 717 and M;; = 9,
meaning A, and j17AY; can be written as a polynomial in these five Eisenstein series. As an indication of the
complexity of the formulae, we present these two examples in section 5. The formula for Ay7 and ji7 each occupy
approximately one page.

We note that the Tables 3 and 4a of [2] describe, in their notation, how one can express each Hauptmodul jy in
terms of holomorphic forms. In Table 3 we translate the aforementioned data from [2], related to 43 groups defined
by (4) with square-free N and genus zero, such that we explicitly write these formulae in terms of the Dedekind eta
function and theta function attached to quadratic forms. By combining our formulae for jy and the formulae from
[2] one has the prospect of obtaining further identities involving holomorphic Eisenstein series and theta functions.

As in [7], the theoretical work developed in this article is supplemented by extensive computer analysis and, quite
frankly, some of the results are not printable. For example, for N = 119, the formula for ji19 from [7] occupies
nearly 60 pages. Nonetheless, in order to disseminate the results obtained by our algorithms, we have posted all
formulae to a web site [8].

2. BACKGROUND MATERIAL

2.1. Holomorphic modular forms. Let I' be a Fuchsian group of the first kind. Following [10], we define a
weakly modular form f of weight 2k for k > 1 associated to I' to be a function f which is meromorphic on H and
satisfies the transformation property

b
Vi (Zjid> = (cz+d)? f(z) for all <Z 2) el

Assume that T' has at least one class of parabolic elements. By transforming coordinates, if necessary, we may
always assume that the parabolic subgroup of I'" has a fixed point at ico, with identity scaling matrix. In this
situation, any weakly modular form f will satisfy the relation f(z 4+ 1) = f(2), so we can write

o0
flz)= Z ang™  where g = ™%,

n—=—oo

If a,, = 0 for all n < 0, then f is said to be holomorphic in the cusp; f is called a cusp form if a,, = 0 for all n < 0.
A holomorphic modular form with respect to I" is a weakly modular form which is holomorphic on H and in all of
the cusps of T'.

For I = PSL(2,Z), the full modular surface, there is no weight 2 holomorphic modular form. Nonetheless, one
defines the function Fs(z) by the g-expansion

(5) Ey(2) =1-24> o(n)q".

It can be shown that F(z) transforms according to the formula

*

(6) Ey(yz) = (cz 4 d)*Fy(2) + 6 (cz+d) for <z d) € SL(2,Z).

—C
i
From this, it is elementary to show that for a prime p, the function

_ pEa(p2) - Bal2)

Eg’p(z) : p— 1
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is weight 2 holomorphic form associated to the congruence subgroup I'g(p) of SL(2,Z). The g-expansion of Ej ,, is
o0

Eyp(z) =1+ b1 > o) (g" = pg™).

n=1

2.2. Certain arithmetic groups related to ”moonshine”. For any square-free integer N, the subset of SL(2, R)
defined by (4) is an arithmetic subgroup of SL(2,R). As shown in [3], there are precisely 44 such groups which have
genus zero and which appear in ”Monstrous moonshine conjectures”. In this article we will focus on the 43 genus
zero groups for which N > 1.

We denote by T'o(N)t =To(N)*/{£1d} the corresponding subgroup of PSL(2,R). Basic properties of T'o(N)™T,
for square-free N are derived in [6] and references therein. In particular, we use that the surface Xy = T'o(N)+\H
has exactly one cusp, which can be taken to be at ico.

Let T™) denote the ring of holomorphic modular forms associated to Xy, and let ‘J'ég) denote the holomorphic

modular forms of weight 2k. We will denote the subspace of cusp forms on Xy of weight 2k by Séjkv).

2.3. Holomorphic Eisenstein series on I'g(N)*. In the case when N > 1 is square-free, the holomorphic
Eisenstein series associated to I'g(NN)* are defined for k£ > 2 by

Eéfj)(z) = Z (cz+d)™%  with v = (Z ;)
YE oo (N)\Lo(N)+

where ', (V) denotes the stabilizer group of the cusp at ico. In [7] it is proven that Eég)(z) may be expressed as a
linear combination of forms Esy(z), the holomorphic Eisenstein series associated to PSL(2,Z). Namely, it is known
that

1
(7) EN(2) = V) % 0% By (v2),

where o, denotes the generalized divisor function

Oa(m) = 250‘.

dlm

Formula (7), together with a well-known g-expansion of classical forms FEsj yields that the g-expansion of Eég) is
given by

1 4k & 4
8 EMN(2) = TSR [ Q—— oop—1(5)g” |,
( ) 2k ( ) O'k(N) UlZN B2k Jzz:l 2k 1(])(]

where By, denotes the k-th Bernoulli number.

2.4. Kronecker limit function on I'g(N)*. Associated to the cusp of Io(N)* one has a non-holomorphic Eisen-
stein series denoted by €3'(z, s) which is defined for z € H and Re(s) > 1 by

EPar (5, 5) = > Im(nz)°.
NET oo (N)\To (N)+

In [7] it is proven that, for any square-free N which has r prime factors, the parabolic Eisenstein series £82%(z, s)
admits a Taylor series expansion of the form

EPr(z s)=1+s-log | o H In(v2)[* - Im(2) | + O(s?), as s — 0,
v|N

where 7(2) is Dedekind’s eta function associated to PSL(2,Z). As stated above, it is proven that the function
N
9) An(z) = | [[n2) ]
v|N
where

ol ) 24
Iy =2 1cm(4, 2 7(2470(]\[)))
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and lem(-, -) denotes the least common multiple function, is weight kx = 2"~/ modular form on I'y(N)+, vanishing
at the cusp ioco only. We call the function Ayn(z) defined by (9) the Kronecker limit function on T'o(N)*.

2.5. The algorithm. Let Xy = I'o(N)*\H have genus g. For any positive integer M, the function
by
(10) Fy(z) = H (E&]\i)(z)) /(AN(z))M where Zbymy =Mky and b= (b1,...)

is a holomorphic modular function on Xy, meaning a weight zero modular form with polynomial growth near iocc.

The g-expansion of F} follows from substituting the g-expansions of EIEN) and Ay.

Let 8ps denote the set of all possible rational functions defined in (10) for all vectors b = (b,) and m = (m,)
with fixed M. In [7], we implemented the following algorithm, which we refer to as the JST2 algorithm.

Choose a non-negative integer «. Let M =1 and set § = 8; U §y.

(1) Form the matrix Ag of coefficients from the g-expansions of all elements of 8, where each element in 8 is
expanded along a row with each column containing the coefficient of a power, negative, zero or positive, of
q. The expansion is recorded out to order ¢~.

(2) Apply Gauss elimination to Ag, thus producing a matrix Bg which is in row-reduced echelon form.

(3) Implement the following decision to determine if the algorithm is complete: If the g + 1 lowest non-trivial
rows at the bottom of Bg correspond to g-expansions whose lead terms have precisely g gaps, meaning zero
coefficients, in the set {¢=1,...,¢ 729}, then the algorithm is completed. If the indicator to stop fails, then

replace M by M + 1, 8 by Sp; U8 and reiterate the algorithm.

If g = 0, then the algorithm stops if the lowest non-trivial row at the bottom of Bs has a g-expansion which
begins with ¢~'. We also denote by My the value of M for the group of level N at which Step 3 shows that the
algorithm is completed.

As stated in [7], the rationale for the stopping decision in Step 3 above is based on two ideas, one factual and
one hopeful. First, the Weierstrass gap theorem states that for any point P on a compact Riemann surface there
are precisely g gaps in the set of possible orders from 1 to 2g of functions whose only pole is at P. Second, for any
genus, the assumption which is hopeful is that the function field is generated by the set of holomorphic modular
functions defined in (10), which is related to the question of whether the field of meromorphic modular forms on
[o(N)* is generated by holomorphic Eisenstein series and the Kronecker limit function. The latter assumption is
not obvious, and, indeed, the assumption itself is equivalent to the statement that the rational function field on X
is generated by the holomorphic Eisenstein series. As it turned out, for all groups I'o(N)T that we have studied
so far, which includes all groups of genus zero, genus one, genus two, and genus three, the algorithm stopped.
Therefore, we conclude that, in particular, the rational function field associated to all genus zero groups I'o(N)* is
generated by a finite set of holomorphic Eisenstein series.

We described the algorithm with choice of an arbitrary x and g. For reasons of efficiency, we initially selected
K to be zero, so that all coeflicients for ¢” for v < k are included in Ag. In [7], it is shown that for each N, there
is an explicitly computable k = xx such that if a modular form associated to I'o(IN)* has integral coefficients in
its g-expansion out to ¢"V, then all remaining coefficients are also integral. The list of xy for square-free levels N
provided that I'o(IN)* has genus zero is given in Table 1 of [7]. In the implementation of the above algorithm, both
in the present article and in [7], the value of k was finally increased to £ .

In the present article, we implemented a slight variant of the above algorithm, which we refer to as the JST3
algorithm. The difference between the JST2 and the JST3 algorithm is the following action should the decision
in Step 3 fail.

Replace M by M + 1, 8 by Syy, and reiterate the algorithm.

In other words, the JST3 algorithm studies the g-expansions of the space of rational functions of the form (10)

with a fixed denominator (A N (z))M Should the JST3 algorithm successfully complete, then the row in Bg with

g-expansion beginning with ¢~ would correspond to a formula for jy with denominator (A N(z))M and numerator

given as a polynomial in Eisenstein series. Furthermore, any lower row in Bg would correspond to a g-expansion
beginning with ¢°, which would yield, upon clearing the denominator, a formula for (A N (z)) Min terms of Eisenstein
series.

As we will report below, the JST3 algorithm has successfully completed for all genus zero groups T'o(IN)* with
square-free level N.
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3. MODULAR FORMS ON SURFACES Xy

From Proposition 7, page II-7, of [1], we immediately obtain the following formula which relates the number of
zeros of a modular form, counted with multiplicity, with its weight and volume of Xy .

Lemma 1. Let f be a modular form on Xy of weight 2k, not identically zero. Let Fn denote the fundamental
domain of Xn and let v,(f) denote the order of zero z of f. Then,

(11) WO e Y Swtn Y w0,

2T e
e€ln zETN\EN

where € denotes the set of elliptic points in Fy and ne is the order of the elliptic point e € En.
Lemma 1 enables us to deduce the following proposition.

Proposition 2. Let N be a square-free number such that the surface X has genus zero. Then, there are no weight
two holomorphic modular forms on Xy .

Proof. From the tables in [3], one determines that all genus zero groups I'o(N)*1, for a square-free N have a at most
one elliptic point of order three, four or six and a various number of order two elliptic points. Let ey (2) denote the
number of order two elliptic points on X, and let ny € {3,4,6} denote the order of the additional elliptic point on
X . Since all surfaces Xy have one cusp and genus zero, the Gauss-Bonnet formula for the volume of the surface
Xy becomes
(12)

= Cen() + 1_1>5(N)_1,

where 0(NV) is equal to one if X has an elliptic point of order different from two and zero otherwise.

V) Lo+

For an arbitrary, square-free N and e | N, the elliptic element of T'g(N)* is of the form

(N)/ve dve)
where a,b, ¢, d, € Z are such that |(a + d)+/e| < 2 and ade — (beN)/e = 1. The first condition implies that either
a+d=0or|a+d =1andee{l,23}
If |a +d| =1, then d = £1 — a, hence

(e¥five ) = (it st a) #em

for any choice of a,b,c € Z such that a(+1 — a)e — (beN)/e = 1. Therefore, there are no order two elements in

To(N)* such that |a +d| = 1.
On the other hand, if a + d = 0, then —a?e — (bcN)/e = 1, hence

(e ) -G %)

In other words, any elliptic element (13) of I'g(N)* has order two if and only if @ + d = 0. Let

_( /e b/ye
" \eN)/ve —ave
denote arbitrary elliptic element of I'o(N)* of order two, and let z, be its fixed point. Solving the equation

n(zy) = 2, leads to the conclusion that (z,cN/\/e — ay/e)* = —1.
Assume f5 n is a holomorphic modular form on Xy of weight 2. By the transformation rule, we have that

f2,N(zn) = fQ,N(nZn) = (_1)f2,N(Zn)7

hence z, is vanishing point of fs n. Since this holds true for any order two elliptic element of I'o(N)*+, we conclude
that all order two elliptic points of X are vanishing points of fo y. Applying Lemma 1 to fz n, we arrive at the
inequality
Vol(Xy) _ 1
——2 > —en(2
o =2V
which contradicts (12). Therefore, there are no weight two holomorphic modular forms on Xy . O

Though there are no weight two holomorphic forms on I'g(N)*, we may construct forms that transform almost
like a weight two form, up to an order two character.
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Proposition 3. Let N = p;---p, be a square-free positive integer. Let p(v) denote the Mdbius function and Es
the series defined in (5). Then the holomorphic function

Es n( v)vEs(vz)

satisfies the transformation rule

o (e7) = u(e)(C%z Ve Fa(2)

(o b
o= (e e €Tn”

Proof. Choose and fix any e | N. For any v | N, let (e,v) denote the greatest common divisor of e and v. Then,
using the transformation formula (6) for Es, it is easy to deduce that

ﬁ(c%ﬁ_ dv/e) B, <(:Z)22> + %cN (c]:m—d) :

Since N is square-free with r prime factors, it is easy to see that

Z,u(v)%CN (c]:z + d) _ %CN (c]:z + d) Z_} (Z) (—1) =0,

v|N

for any

vE2(v(7ez)) =

hence N

9 ev
UlZNM V)vEa(v(vez ZN \/EZ“‘d\/E) Es (WZ) .
We claim that {v : v | N} = { e 1V | N } which is easily deduced by induction in . Furthermore, when
e has an even number of prime factors the parity of the number of factors of ( )2 remains the same as the
parity of the number of factors of v, while when e has odd number of factors, the parity changes, meaning that

(o) = (e)p(225). Therefore

D u)oEs(v(vez)) = ple)(e

v|N

N
4 dye)2 S pv)vEs(v2)
NG %“

and the proof is complete. O

Proposition 4. The smallest even integer ky such that there exists a weight kx cusp form fn vanishing only at
the cusp ico is given by the formula

24 )
(24,0(N))

where lem denotes the least common multiple and (-,) stands for the greatest common divisor.

(14) kn =lem(4,27 !

Proof. From [7], one has that the volume of the surface X is given by

wo(N)
(15) Vol(Xy) = 22
where r is the number of (distinct) prime factors of N. By combining (15) with (11), we have that
o(N) _
kn - 9% .91 Vioo (fN);
hence 2"~ (ZT | En.

On the other hand, the cusp form fx does not vanish at order two elliptic points. As proven above, every surface
X for a square-free NV has at least one order two elliptic point that is a fixed point of the Atkin-Lehner involution
T~ 2z — —1/(Nz)). Since
In(n(i/VN)) = fx(i/VN) = ()" fn(i/VN),
it folows that 4 | kn. The smallest ky divisible by both 4 and 2“1ﬁ is given by (14). Therefore, the proof
is complete. O

The above proposition, together with Theorem 16 form [7] yields the following corollary.
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Corollary 5. Let {x = 2'""ky, where ky is given by (14). Then, the function

LN

An(z) := H n(vz)

v|N

is the smallest weight cusp form on Xy vanishing at the cusp only. Furthermore, the order of vanishing of An at
the cusp is given by

o(N)n o(N)

N ey

oo (An) = AV
Vioo (AN) 24 924271

The next proposition determines the smallest weight EN for square-free N such that the space S%N) is not empty.
N

Proposition 6. Let N = py ---p, be a square-free positive integer where N > 1. Then, the smallest even integer

kn such that there exist a weight ky cusp form on a genus zero surface Xy is equal to 8, for N € {2,3} and equal
to 4 for all other N.

Proof. When N = 2, it is immediate that &k = 8 is the smallest number such that k - % > 1. Since A, is weight
8 cusp form, the assertion is proven when N = 2.

When N = 3, k = 6 is the smallest number such that k - % > 1. However, if there exists a weight 6 cusp
form on X3, this cusp form also vanishes at order two elliptic point ey of X3. Therefore, the right hand side of the
formula (11) is at least 3/2, while the left hand side of the same formula with k£ = 6 is equal to 1, which yields a
contradiction. This shows that 8 is the smallest possible weight of cusp form on X3. An example of weight eight
cusp form on X3 is Eég) - (Ef’))z, so the case when N = 3 is complete.

When N > 5 we can construct the weight four cusp form on Xy, whether or not the genus is zero, as follows.
Let

Eyn(z) = (B n(2))2.

From Proposition 3, it is immediate that Ey n is weight four holomorphic form on I'o(N)*. Recall that for a
square-free N with r prime factors we have the formula

p(N) = (=1)" Y wu(v).
v|N

The g-expansion (5) implies that Ea n(2) is normalized so that its g-expansion has a leading coefficient equal to
one. Therefore, the difference

An(2) == EXN(2) — Eyn(2)

is a weight four cusp form. By computing the g-expansion of Ey n, we deduce that the term multiplying ¢ in the

g-expansion of E4 n(z) is %7 while the term multiplying ¢ in the g-expansion of EZEN)(Z) is equal to 1i4]82. In
other words, for square-free N ¢ {2,3}, we have the expansion
~ 1 5
A =48 —— — ——— e
Ve =8y~ ) o
The leading coefficient is non-zero whenever N > 5, hence A ~n(z) is a weight four cusp form on Xy . d

4. EXPRESSING THE HAUPTMODUL IN TERMS OF EISENSTEIN SERIES

In this section we discuss the main results of this article.

Theorem 7. For any square-free N > 1 such that the surface X has genus zero, there exist effectively computable
integers My and my, and explicitly computable polynomials Py (21, ..., Tmy-1) and QN (T1, ..., Tmy—1) inmy—1
variables with integer coefficients such that the Hauptmodul jx can be written as

Py(EWM, .. BN )

Jn(z) = (™) - 2(7]7\;3\7
QN(E; . Eyyy)
and the Kronecker limit function can be written as ANN = QN(EZEN), e Eé,anv)
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Proof. The result follows, because for each square-free level N, provided that X has genus zero, the JST3
algorithm terminates in finite time. As stated, the computer code as well as the output is available on web site
[8]. In the space below, let us describe in further detail the output of the computational algorithm. We remind the
reader that the JST2 and the JST3 algorithm are described in section 2.5.

After Gauss elimination, one of the g-expansions has a pole of order 1. This is the Hauptmodul, see section 5 for
explicit examples. Keeping track of the linear algebra, we have an exact expression for the Hauptmodul as a linear
combination of holomorphic modular functions (10) with rational coefficients. In other words,

. 1 N by
Jin(z) = W Zb:cb' <H (E,(m)(z)) ) )

v

where the sum is taken over all b = (by,...) such that > b,m, = kyMy, where My is given in the right column
of Table 1 and Cy € Q.

There is also a g-expansion which is equal to the constant 1. Again, by keeping track of the linear algebra, we
have an exact expression for the constant 1 as

= g L0 (H (E%><z>)b”> ,

v

where the sum is taken over the same set of b as above and Dy € Q.
By the design of the JST3 algorithm, this exact expression can easily be solved for the My-th power of the
Kronecker limit function, showing that

RERGACHE N
xone (I (BY6) ")

After multiplication of both numerator and denominator with the least common multiple of the denominators of
the numbers C, and Dy, we deduce the statement of the theorem. O

in(2)

Remark 8. The polynomials Py and @y appearing in Theorem 7 are weighted homogeneous in the sense that
there exists an integer My such that the coefficient of the term (z1)*! -+ (@ —1)*™~~1 is non-zero only if 4daq +
6o + ... +2myQmy—1 = kn My, where ky is the weight of the Kronecker limit function Ay.

Remark 9. Table 1 provides the data regarding the performance of the JST2 and JST3 algorithms. More
precisely, the first columns of data in Table 1 lists, for each level N provided that X has genus zero, the weight kx
of the Kronecker limit function and the integer xy. To recall, it is shown in [7] if the g-expansion of a holomorphic
modular form has integer coefficients out to ¢"~, then all further coefficients are also integral. The columns of data
in Table 1 under the heading JST2 algorithm lists the integer M such that the JST2 algorithm stops, together
with the g-expansions which are used in the Gauss elimination algorithm as well as the order of the largest pole at
ico amongst the rational functions considered. The columns of data in Table 1 under the heading JST3 algorithm
present similar information.

Remark 10. Table 2 provides a list of the holomorphic Eisenstein series Efnl\i) which appear in the expression for
the Hauptmodul jy cited in Theorem 7. For all levels, the highest weight Eisenstein series has weight 26.

Remark 11. Expressions that are based on the track record of the linear algebra depend on how the base change is
made through Gauss elimination. In particular, there may be linearly dependent functions, some of which survive
the Gauss elimination while others get annihilated. We sought to express our results in terms of Eisenstein series
whose weights are as small as possible. In other words, in the Gauss elimination we prioritized the holomorphic
modular functions accordingly.

By expressing the Hauptmodul in terms of holomorphic Eisenstein series of smallest possible weights, we were
able to determine a finite list of holomorphic Eisenstein series which generates the rational function field. Let G
denote any modular form of weight k£ and consider the function

F()=G() (BV(2) " (B 0)™ [ (ax )™,

with non-negative integers ng, ng, and n such that k& + 6ng + 4ny = kynMpy. There is a rational function R in one
variable such that F(z) = R(jn(z)). Therefore, we conclude that G can be written as a rational function in terms
of the holomorphic Eisenstein series that are listed in Table 2.
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TABLE 1. Performance of the JST2 and the JST3 algorithm. For all genus zero groups I'g(IN)*
we list the level N, the weight kxn of the Kronecker limit function, the value of kx in the proof of
integrality [7] (left); the level N, the number of iterations M, the number of equations, and the
largest order of pole for the JST2 algorithm (middle) and similar for the JST3 algorithm (right).

JST2 algorithm JST3 algorithm
N kny Ky N M #{eqs} pole N My H#{egs} pole
1 12 19 1 1 5 1 1 1 4 1
2 8 47 2 1 3 1 2 1 2 1
3 12 48 3 1 5 2 3 1 4 2
5 4 19 5 1 2 1 5 3 4 3
6 4 60 6 1 2 1 6 3 4 3
7 12 19 7 1 5 4 7 2 21 8
10 8 75 10 2 10 6 10 2 7 6
11 4 19 11 3 8 6 11 9 88 18
13 12 19 13 2 26 14 13 3 88 21
14 4 47 14 3 8 6 14 6 21 12
15 4 96 15 3 8 6 15 5 12 10
17 4 19 17 4 15 12 17 9 88 27
19 12 19 19 3 114 30 19 4 320 40
21 12 53 21 2 26 16 21 2 21 16
22 4 47 22 4 15 12 22 6 21 18
23 4 19 23 5 27 20 23 15 1039 60
26 8 47 26 3 31 21 26 4 55 28
29 4 19 29 6 48 30 29 15 1039 75
30 4 127 30 4 15 12 30 6 21 18
31 12 19 31 4 434 64 31 5 1039 80
33 4 48 33 5 27 20 33 8 55 32
34 8 47 34 3 31 27 34 4 55 36
35 4 19 35 5 27 20 35 7 34 28
38 4 47 38 5 27 25 38 10 137 50
39 12 48 39 3 114 42 39 3 88 42
41 4 19 41 7 82 49 41 21 8591 147
49 4 108 42 5 27 20 42 7 34 28
46 4 47 46 6 48 36 46 14 708 84
47 4 19 47 8 137 64 47 27 56224 216
51 4 48 51 6 48 36 51 11 210 66
55 4 19 55 6 48 36 55 8 55 48
59 4 19 59 9 225 90 59 33 310962 330
62 4 47 62 7 82 56 62 18 3094 144
66 4 60 66 6 48 36 66 8 55 48
69 4 48 69 7 82 56 69 14 708 112
70 4 181 70 6 48 36 70 8 55 48
71 4 19 71 10 362 120 71 39 1512301 468
78 4 81 78 6 48 42 78 9 88 63
87 4 48 87 7 82 70 87 17 2167 170
94 4 47 94 8 137 96 94 26 41646 312
95 4 19 95 7 82 70 95 11 210 110
105 4 181 105 7 82 56 105 9 88 72
110 4 89 110 7 82 63 110 9 88 81
119 4 19 119 8 137 96 119 10 137 120
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TABLE 2. Finite sets of Eisenstein series which include the generators of the holomorphic Eisenstein
series on groups I'o(N)* of genus zero. Listed are level and finite set.

— =
e No w2

13
14
15
17
19
21
22
23
26
29
30
31
33
34
35
38
39
41
42
46
47
51
55
59
62
66
69
70
71
78
87
94
95
105
110
119

finite set

E4(11>7 Eél)
2 2 2
B BB
E4 3E6 5E12
EY EY EY B
E(G),E(6),E<6),E(6)
E<7>4E<7)6E<7>8E<7>l%<7>
(10) 4(1(7)) 6 (710)8 ’(10)10 ,(1(1))2 (10)
E4 7E6 7E8 7E10 7E12 aElﬁ
Ein),EéH),Eén),E%U,Egl)
(13) (13) (13) (13) (13)
E4 7E6 7E8 7E10 7E12
EiM) Eé14) E§14> E%“ Eg4)
15 15 15 15 15 15 15
S
(19) (19 119)) n009) (19)
E4 7E6 7E8 7E10 7E12
LB BT B B B
E4 7E6 (725)8 (725)10 (72512 (72514 (’23E>16 ’E18
E<26>4 E<26>6 E<26>8 E<26>1°E<26>12E<26)
4 >+ H»4t8 H»4t10 12 14
Efg),EéQg),E§29>,E§§9>,Egg)
30 30 30 30 30 30 30 30
BPY B ’nglﬂ)é )(,Sflﬂ)io >(,3{J>§2 l»f)h ’55;6 ) B
(33) 2(33) 2(38) p(33) pm(33) pr(33)
E4 ’EG 7E8 7E10 7E12 7E14
B3, BV, BV, BGY, EGY, EGY, EGY
TN o1 S S ol S oS Ol AR Ol VR O
38 38 38 38 38 38
ARl
E4 7E6 ’ES 7E10 7E12 7E14
Ei“),Eé‘“),E§41>,E§gl),E§§l)
42 42 42 42 42 42 42 42
B, E >{4§)é >{4§)§0 >(,4g§2 ><,4§)§4 ’(,4169)56 LB
%47) ?47) 2(347) %27) %57)
E4 7E6 ’ES 7E10 7E12
R A
55 55 55 55 55 55 55 55 55 55
B ESY B "’(,5!;3)50 >(,5§)§2 >(,5§)§4 >(,5J§)§6 >(75§>§8 ) ESY ESY
E4 EG E8 7E10 ’E12
Eiaz)’Eém)’Eésg) E%SQ),ESm
66 66 66 66 66 66 66 66 66 66
B, 500, 5. B0 580, B Bl B w0, B
E4 7E6 7E8 7E10 7E12
70 70 70 70 70 70 70 70 70 70
B, B0, 5" B B, B B0, B 6, £
E4 7E6 7E8 7E10 ’E12
78 78 78 78 78 78 78 78
B B ’58175)& )(,8175;0 >(,8§>§2 ><,8§>§4 ’585“)%6 ) B
(on) o) ion) (58) (o)
E4 ,EG >E8 7E10 7E12
B, B BV BV BSY B ERY
Eil%),Eé105),Eélos),E{éos),Egos),Eﬁos),E%%),E%O@,Eééos)
110 110 110 110 110 110 110 110 110 110 110 110
B Bl Bl BBl B B B B
E4 7E6 7E8 ’Elo 7E12 7El4 7E16 7E18 7E20 7E22 7E24

11
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Remark 12. We note that the sets in Table 2 are not necessarily minimal sets of generators. A specific example
in the case N = 2 is discussed below. As stated in the introduction, our goal was to determine a set of generators
of the function field. Indeed, it seems to be a difficult problem to determine the structure of the ring of modular
forms in any setting when My > 1, meaning when there is an expression for the My-th power of the Kronecker
limit function in terms of holomorphic Eisenstein series yet no apparent expression for any smaller power of the
Kronecker limit function.

5. EXAMPLES

In this section we will present a number of specific formulae for various levels. It seems as if each level has its
own idiosyncratic characteristics, so we choose various examples which, in our opinion, depict some of the most
comprehensible and quantifiable nuances.

5.1. N = 2. We will cite specific results here, referring the reader to the article [9] for additional information and
proofs. The Kronecker limit function can be written as

2 2
(16) As(z) = 1152 (EA(L )( )) o @E( )( )-
In addition, one has that
Ja(2)Aa(2) = — I (B ()" + BB (o).
By arguing as in [10], one can prove a dimension formula for the space of automorphic forms of weight 2k, namely

that
(17) dim ‘Iéi) _ {UZJ, if k is congruent to 1 modulo 4, £ > 0

|%] 41, if k is not congruent to 1 modulo 4, k > 0.

The space ‘J'éi) is generated by the set of monomials (Ef)(z))l(Eéz)(z))m(EégQ)(z))”, where [, m, n are non-negative
integers such that 41 + 6m + 8n = 2k. The dimension formula (17) yields some interesting number-theoretical
formulae. For example, since dim ‘J'%) =1, we see that E%)(z) = Eéz)(z)Ez(f)(z). By equating the g-expansions (8)
for k € {2,3,5}, one obtains the following summation formula for the generalized sum of divisors:

n—1
AP (n) =336 Y AP (HAY (n— j) + 747 (n) — 6457 (),

Jj=1

where A;i)_l(n) = oo_1(n) + 286(n)oax_1(n/2), for k = 1,2,... and §(n) = 1 for even positive integers n and
d(n) = 0, otherwise.

Analogously, using formula (16), the g-expansion (8) and the g-expansion for the delta function, A(z) =
>0 7(n)g", where 7(n) is the Ramanujan function, one obtains relations involving 7, o3 and o7.

5.2. N = 3. As with the case N = 2, we refer the reader to [9] for additional information and proofs. The Kronecker
limit function vanishes to order 2 at ico and has weight 12. The smallest weight cusp form has weight 8, but it
vanishes to order 1 at 700, and, consequently, it vanishes elsewhere. The Kronecker limit function can be written as

. 2
(18) 33(2)8s(2) = {255 (B ()" + 4565 (B” (2))” — RSB (2)

and the Hauptmodul is given by

3
(19) As(z) = 3456 (Ei )( )) - 712094090 (E(3)( )) + 22%3330E<3)( )

The dimension formula for the space of automorphic forms of weight 2k is

dimT® — L%J, if k is congruent to 1 or 3 modulo 6, k£ > 0
2k |%] 41, if k is not congruent to 1 or 3 modulo 6, k > 0.

We note that the forms Eé?’)(z) - (Ef’)(z))2 and Eﬁ)’))(z) - Ei3)(z)Eé3)(z) are cusp forms which vanish at elliptic
points on X3; see Appendix B of [9]. In other words, there are cusp forms of weight smaller than the weight of
the Kronecker limit function, but these forms necessarily vanish at some point in the interior of X3, whereas the
Kronecker limit function vanishes at ioo only.

Finally, let us explain why EE(;?’) does not appear in Table 2. The information in Appendix B of [9] describes the
zeros of small weight holomorphic forms. In particular, we conclude from the information provided that

B (2)

B0 - P P
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for some explicitly computable constants ¢; and cy. From this, we get that

c1j3(2) + c2

3 () — (B®) ()2
(20) Y ) = (B @) ot

When combining (18), (19) and (20), we get a formula which expresses Es(s3) as a rational function involving Ef),
EéB) and ES), as asserted by Table 2.

5.3. N =5. In the case N = 5, the surface X5 has genus zero, three order two elliptic elements e; = i/v/5,
ez = 2/5+1i/5, e3 = 1/2 4+i/(2V/5), and one cusp, hence Volyy,(X5) = 7. Its Kronecker limit function has weight
four, which is minimal, and the function vanishes at ico to order one, which is also minimal. As a result, we have
that the mapping f — Asf is an isometry between the spaces ‘J'é‘?ﬁ 4 and Sé}?; therefore, we arrive at the dimension

formula

1, if k is congruent to 1 modulo 2, k£ > 0

dim7? = ] |
2k |+ 1, if k is not congruent to 0 modulo 2, k > 0.

I

N7 o

The space ‘.Téi) is generated by the set of monomials (Eis)(z))l(A5 (z))m(Eé5) (z))™, where [, m,n are non-negative

integers such that 41 + 4m + 6n = 2k. From the output of the JST2 algorithm, we have that
J5(2)As(2) = BV (2) — 12 A4(2).

The analysis of A3 differs between the JST2 and JST3 algorithms. From JST2, we have that A} is a rational
function in the holomorphic Eisenstein series of weights four, six, eight and twelve. From JST3, we have that A3
is a polynomial in the holomorphic Eisenstein series of weights four, six, eight and twelve. Namely, from the output
of the JST3 algorithm, we have that

. 3 _ 10330419229 ( 1~(5) 3 36659 (5) 2 28493266087 1~(5) (5) 2999646893 11(5)
Js(2)(As(2))” = 11016000000(E4 (2)) +2448000(E6 (2))" — T1ot6000000 £s - (2)Eq " (2) + 1536000000 L12 (%)

and

3 5 3 5 2 5 5 5
(A5(2)> == 122388%0 (Ei )(z)) - ﬁ(Eé )<Z)) + 230222560701070E§ )(Z)Ei )(Z) - 55509080708030 E§2) (2).

5.4. N = 6. Topologically, X5 and X¢ are identical, with the same number of cusps, elliptic points of order two,
and consequently, the same hyperbolic volume. The JST2 and JST3 algorithms performed similarly in both cases,
as one can see from Table 1 and Table 2. All comments above regarding the holomorphic function theory for Xz
hold for Xg. However, as show in [6], the analytic function theory of X5 and Xg are different. Specifically, the
counting functions for the analytic Maass forms, when ordered by their Laplacian eigenvalues, are shown to be
equal in their lead term but unequal in lower order terms.

5.5. N =17. As we stated in the introduction, as N becomes larger, the formulae become massive. Our last
example for N = 17. The Kronecker limit function has weight four and vanishes at ico to order four. From the
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JST3 algorithm, we have the following formulae:

. 9 17 9
]17(2) (A17(2)) __ 81682801889356820001790224970058471917613108127362192461613220533 (EL(L ) (Z))

+

+
+
+

+
+
+
+

+

3269846855773492420944242299705431901325975126578932604974661632

57998022455299820152689336251300228068357304045275286805301 (E(17) (Z)) 2 (E(17) (Z)) 6
1197457521190948626327504142387996791894290229520024731648 6 4

40497436515338798408532045523225489025965457561330556316291 (E(17) (Z))4 (E(17) (Z)) 3
1852774239194857326466652706713276353684752025138495488000 6 4

3758480257690225061233693208729793594924453574315163 (E(17) (Z)) 6
550341367907988517797569501748755788899740024832000 6

19414695740146736017085565287911573267947533788487530546931336997391 E(17) (Z) (E(17) (Z)) 7
235020242758719767755367415291327917907804462222860780982553804800 8 4

87392429573930662513617849766871793131053840056808626436739811257 E(17) (Z) (E(17) (Z)) 2 (E(17) (Z))4
429213680251880648249264766037197600094609654143583864750080000 8 6 4

5203291809002722923420727059042670529678338299681100572348497 E(17) (Z) (E(17) (Z) ) 4E(17) (Z)
159222786180808051493227966983172186644783377160339456000000 '8 6 4

3408021881707620602850044141317857445104537752516243513916285865231 (E(17) (Z)) 2 (E(17) (Z)) 5
546558704090045971524110268119367250948382470285722746471055360000 8 4

16613503534705813629198888518084937494696284987808069450102921171 (E(17) (2)) 2 (E(17) (Z)) 2 (E(17) (Z)) 2
95380817833751255166503281341599466687691034254129747722240000 8 6 4

2084310764069464266375452181379302123943671896630614730410490282708941 (E(17) (Z))3 (E'(17) (Z)) 3
24481275287366642474517439092846658115396298148214664685682688000000 8 4

9922136522478992021059089148544040599546174236808342061149389 (E(17) (Z))3 (E(17) (Z)) 2
600269903901646354129469435526559143650833331894479749120000 8 6

39971724261482388723963548784518805970985444209456555554807081177551 (E(17) (Z)) 4E(17) (2)
580296895700542636433005963682291155327912252402125385142108160000 8 4

12179813594881425731721530954876395006064827564865712237231709007 E(17) (z)E(m (2) (E(17) (z)) 5
111595556865488968544808839169671376024598510077331804835020800 10 6 4

1625258630148098158844608861059428762679867410760523654188493 E(17) (Z) (E(17) (Z)) 3 (E(17) (Z)) 2
305707749467151458866997696607690598357984084147851755520000 10 6 4

201956165169824936446796453214912198922237546648448042931247350643 17(17) (17) (17) (17) 3
697172230109306053405055544810446 1001 53740687983323780218880000  L/10 (2)Eg " (2)Eg (Z)(E4 (Z))

2813492092804509777019550484166164259166371672470004179865987 E(17) (z)E(N) (2) (E(17) (z)) 3
110819059181842403839286665020287841904769230503596261376000 10 8 6

208150566267220507427939657298379519874877536521040468383984890437 7(17) (17) 2 (17) (17)
7898889216372542136202200792 41 7844006 1496275 1033295 120875520000 210 (2) (Es (2)) Eg " (2)Ey 7 (2)

270142921637107712433606444209937936587102913556256973385136064101 (E(17) (z)) 2 (E(17) (z))4
1339146682385867622537706070036056512295182120927981658020249600 10 4

118581244701243654625492701946386671875131600350921745366238181 (E(17) (z)) 2 (E(17) (z)) 2E(17) (2)
1324733581024322988423656685299992592884597697974024273920000 10 6 4

622123658423176240663440801764445330920253599234807877389715511211 (E(17) (Z)) QEO?) (Z) (E(17) (Z)) 2
1287641040755641944747794298111592800283828962430751594250240000 10 8 4

41865928593946018666000515901728601665582738769261235242020892533923 (E(17) (Z)) 2 (E(17) (Z)) 2
970881344729754026339836900776140971414007037672786702064680960000 10 8

17 3 (17
226293023118065631604956427915797705760362816981994085929537(E§O)(z)) Eé )(z)

2676229456614793916007387243030288066433530702977826816000
65939988441096018663885334259995469677 77(17) (17) 6
E}7(2) (E4 (Z))

1934740380512325216435446698160947200

47508694350054116027131578232203571279280588142292406574968917 E(17) (2) (E(17) (z)) 2 (E(17) (z)) 3
496775092884121120658871256987497222331724136740259102720000 12 6 4

83239130800439493554048989758304142656207424379566457431 E(17) (Z) (E(17) (Z)) 4
2818127349459872237687554172747939125917634265088000000 12 6

18888098569562683617871650219704377045625972851708713833077441 7-(17) (17) (17) (17) 2
90355018576824924131774251307499444466314827348051820544000  L12 (2) 1y (2) Eg (Z)(E4 (Z»

6458100747185096513157918629463271052359 (E(17) (Z)) 2 (E(17) (Z)) 3
48368509512808130410886167454023680000 12 4

13456181814083822984196529705199819074619 (E(17) (2)) 3
7T183791775757654910988565086208000000 12
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and

9 9
(A17(Z)) _ _4410175152266863630497017095287573799108101287320169 (E(17) (Z))

+

+

+

513269785149806673002504728644869309011527884341248 4

19865215328281078919219868581830673116116281279861 (E(17)( )) 2 (E(17) (Z))6
1077982783479943155001973186393454060492470353920 4

1147994099850642662275857201554136108251932243 (E(17) ( )) 4 (E(17) (Z)) 3
116332425049635581779544719243012827040972800 4

257163348099153057405937570593213576401 (E(17)( ))
86387408378599422207040509547266048000

4110275602561195487616512760454051197916582070385787933 E(17)( ) (E(17) ( ))

147565063230569418488220109485399926340814266748108300
2455783752311086170178917777522781426586892700694851 1(17) (17) 2 (17) 4
33686061083 7482235038 1166207 1795130390389698560000 L8 (z )(EG (Z)) (E4 (Z))
1581775255838347728745765778157179068844765441801 77(17) (17) 4 (17)

09073177 T77030578001 70624300946 4148938336000000 L8 (%) (E6 (z)) Ey(z)
6518162027197225998646914560331274207300504121132929847 (E(17) (z)) 2 (E(17) (z)) 5
1844563290382117731102751368567499079260178334351360000 \*~'8 4
877428475040946870505912480572673877165899233742103 ( 7;(17) 2 (17) 2 (17) 2
14971983103888099375027405366575750840173199360000 (ES (Z)) (E (Z)) (E4 (Z))

_ 905386954382815420576749294608296584568282296576830392199 (E(17)( )) (E£17)(z))3

+

+
+

+

+
+
+

+

+

__ 88050066607840362983543089832425254378757106875786733 E(17)( )E(17 ( )
8

30742721506368628851712522809458317987669638905856000000

207452833460189538372130707619778910743078771025457 (E(17) (Z)) (E(17) (Z)) 2
36182292501062906822982896302558064530418565120000 8 6

17 4 17
6765708051219903828398888390867858547193923080811280631 (E( ) (z)) E( ) (Z)
(

273268635612165589793000202750740604334841234718720000

8
7025876804004356240055790621469114807967838822691 E(17) ( )E(17 Z) ( (17) (Z))
194096623064255692728887138824306132775652556800 6

203944326653207551761076174261325691779672537 17 17) 2
2658566500451212183;69%865;)5561(1)76228;)896960800E( )( )(E( )(Z) ( Z)

3

() (BT (2)

) ( 17) )3
66394449571915938902069992307694226884439057160324951 E(17) ( (E(17 ( )) ( )E(17) ( )
1751722023154907626878206427889362848300264325120000 8

3664823227867792880990102284616506270153441589203601 ( (17) ))Q(E(17 Z )
2

875861011577453813439103213944681424150132162560000

114754891200905341203611097297729345611512888589E(17)( E(17) 2
13916266346562656470378037039445409434776371200

52551660694647228806346192836680885449007929753600 10 Z

14427551517079169370308214911137713786234600256489 (E(17)( )) ( 17)(,2)) E(17( )
415888419552447204861872371293770856671477760000

34114607946828890598140117698005174033430842408608771 (E(17)( )) E(17)( ) ( ( ))2
202121771902489341562869972448772636342338191360000

1186277940138861135501685541633367245343342399481395343 (E(17) (Z)) (Eélﬂ (Z))

76199908007238481769201979613187283901061498142720000 10

2240074672005345691936094582673021223667749558747 (E(17) (Z)) 3E(17) (Z)
73095540406187690551480598591026392990744576000 10 6

473713406463236803998887 7(17) (17) 6
10793493008974879129600 112 ()(E4 (Z))

187627181944563944553278965376532704223825410987 (17) (17) 2 (17) 3
5030908301037667800748456 104360131330703360000 L1 ()(Eb‘ (Z)) (E4 (Z))

3176432730003963047610699437833910664552631 E( 7) (Z) (E(17) (Z)) 4
221181554210724382719750270133948416000000

2144787933823513840784295072436611609578065848101 (17) (17) (17) (7) 2
3119163116613354036460427547032814250360832000 L1 (2)E1 " (2)Eg (Z)(E4 (Z))

46882982116711758510391631 17 17)
1019812325224137519578240000 (E( )( )) (E( (Z))

4639965815125172171338200503 (E(17)( ))
76485924391827898368000000

Using the exact 1dent1ty of the Hauptmodul in terms of Eisenstein series, we can read off that E(17)( ), E (17)( ),

17 17
ELT(2), Bl (2)

and E12 (z) generate the holomorphic Eisenstein series E,(c )(z) for all even k > 4.

6. CONCLUDING REMARKS

6.1. Known relations for Hauptmoduli. In [2], the authors computed expressions for jy, up to an additive
constant. The authors call their function ¢x. The data from [2] relates to genus zero groups ['g(N)T with square-
free level N as given in Table 3, using the Dedekind eta function together with 6(a, b, ¢), which is the theta function
defined by the series

o= ¥ i)
(z,y)€Z?
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10

13
14
15

17
19
21
22
23
26

29
30
30
31
33
34
35
38
39

41
42
46
47
51
55
59
62
66
69
70
71
78
87
94
95
105

110
119

J. JORGENSON, L. SMAJLOVIC, AND H. THEN

TABLE 3. Known expressions of the Hauptmoduli jy for the genus zero groups T'o(N)™.

Formula for ¢ty = jn + const.

:(z) )+ 4096("(22))
7732)) + 729( n(z)>)12

= (
(
(7te5)° +125(35)°
(
(57

nz) B2nE2)\4 _ ( n(=)n(32) _ (m(22)n(32) )12 (2)n(62) \12
nn(&)"n(az)) +81(717£2)77(22)) = (SHEn)" + 64(B2rCE)" e = (W) + (HEES) " e

n(z) ) +49( ((72)))

n(7
. 4@%%2?55131 Fm - G o - G G o
: ngz(i? 1)1z>+ 1;(7](71(32;))31522@ n(z)n(11z) n(z)n(11z) c1
: "hGnr) 43 ) +§((73<2z n142))3 _ (@4 | (nan0an)e
o BEREE) )2 | goliDaliEh e _ (LN | AERIE |
= \nteamtien pGme2) ) = (Gmass) @mea) T

2n(z)n(172)
26(2,2,10) 2
9;1(22)3?32@94257 n(7z)n(21z)\ _ (n(32)n(7z)\2 n(z)n(21z)\2
)+ ( ) . (n(z)n(?lz)) + (7](32)7](72)) t+a

n(72)n(21z) n(z)n(32)
n(zx)n(1lz) ) + 4(77(22)77(22))2
PIATR BN (22)n(462) (2)n(462) \ 2

_ n(z)n z n(2z)n z n(2z)n z

s ) = (eomaes) + 4G ) T 4G ) T a

(22)71(132)) + ( n(2z)n(262) )2

(Z)n(%‘Z) 7(2=)n(13z2)

2(3,0,3)-0,(3.,0,%)

217 (z)n (292)

(n n(62) n(lOZ)n(ISZ)) (W(Z)n(62)n(102)n(152))—3 _( n(z)n(32)n(52)n(152) )Jr ( n(z)n(32)n(52z)n(15z) )—1 Jrc
n(2z>n(3z>n(5z)n(SOZ) n(2z)n(32z)n(52)n(30z) ' — \n(22)n(62)n(102)n(302) n(22)n(62)1(102)n(30z) 1
(2(532)77(52)71(62)71(102)) (n(32)n(52)n(62)n(102)) +oey ( (QZ)n(3Z)n(102)n(l5Z)) +( (22)n(32)n(1OZ)n(15Z)) +es
(9

tae =

(
(
(
(Fzmran
(
( (4,0, 47)— 9y(7of))
(
(
(Gm@
(
=

~
w
)

[

~+

w

S
I

2)n(22)1(152)n(30z) 1(2)n(22)n(152)n(30z) n(z)n(52)n(62)n(30z) n(2)n(52)n(62)n(302)
2,2,16) 9428))3

~+

w

=
Il

(RN ol n(n(1z)
n(z)n z n(z)n z -
(n(3z)n(332) ) + 3( n(32z)n(33z) )
t34 is deduced from the formula ¢34(2) + t34(2) — 6 = ji7(2) + j17(22)
tar — (n(52)n(72)) _ (n(5Z)n(7Z>)*
35 n(z)n(352) n(2)n(352) 9
tss is deduced from the formula t35(2) + t35(2) — 4 = J19(2) + j19(22)
_ (n(32)n(13z) n(3z)n(13z) \ —
ts9 = ( n(z)n(&Qz) ) + ( n%z)n(dgz) )
tay = 0 (3,2 2)—6,(3,2,33)
- (2)n(41z)
— n(Z)n(GZ)n(MZ)n(QM) n(2)n(62)n(14z)n(212) \ =2 _ (n(22)n(62)n(7z)n(21z) n(22)n(62)n(7z)n(212) \ —1
taz = (n(22)n(32>n(72)n(422)) (W(QZ)W(3Z)W(7Z)W(42Z)) - (n(Z)n(3Z)n(14Z)n(42Z)) + (W(Z)n(32)n(142)77(422)) +a
tae — ( n(z)n(232) ) +2( n(z)n(23z) )—1
46 (2z)7](46z8 n(22)n(462)
by = 0(2:2,24)-6(4,2,12
47T = 21(2)n(47z) 3
t51 is deduced from the formula t5,(2) — 2t51(2) — 6 = ji7(2) + j17(3%2)

ts5 is deduced from the formula t35(2) — 10t35(2) — 5t25(2) + 16t55(2) = j11(2) + j11(52)
_ 26(6,2,10)

ts9 = 0(2,2,30)—0(6,2,10)

tez is deduced from the formula t8;(2) + te2(2) — 2 = js1(z) + j31(22)

:(n(2Z)n(3Z>n(222)n(332)) (n(22)n(32)n(222)n(332))*
n(z)n(62)n(11z)n(662) n(z)n(62)n(112)n(662)

tey is deduced from the formula tgg(2) — 2t69(2) — 3 = Jas(z) + j23(32)

Lo = ( (2)71(102)71(14z)n(352)) + (n(z)n(102)77(14z)n(352))*

70 (22)17(02)17(72)17(702) n(22)n(52)n(72)n(70z)

" :9(42 18)—0(6,2.12)

" IR n(3b2)n(392) (2)1(62)7(262)1(392)
_ n(z)n(6z)n(262)n(39z n(z)n(6z)n(26z)n(39z -

trs = (GGamGmasnss) + (EmEIns29s2))

tg7 is deduced from the formula t3;(z) + ts7(2) — 3 = jao(2) + j20(32

)
to4 is deduced from the formula t84( )+ t94( ) — 2 = jur(2) + jar(22)
tos is deduced from the formula t55(2) — 3t5s(2) + tos(2) — 2 = j10(2) + J1o(52)
t105 is deduced from the formula t105(z) — 2t105(2) — 3 = 735(2) + J35(32)
(
(

~+

w

@
Il

t110 is deduced from the formula tuo 2) + t110(2) = Js5(2) + Js5(22)
t110 is deduced from the formula t];g z) — 7t§19(2) — 7t%19(z) — 6t119(2) — 7 = ji7(2) + j17(72)
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Additionally, one has, in the notation of [2], the functions 6,(a,b,c) and 60,(a, b, c) which are defined by the same
series which defines 6(a, b, ¢) except one restricts the sum to odd values of x and y, respectively. By combining
our results with the relations for the Hauptmoduli in Table 3, it is possible to deduce many potentially interesting
relations between classical Eisenstein series Fy(z), eta functions and theta functions.

For example, let us take N = 17. In the notation of Theorem 7 one has M;7; = 9 and the Hauptmodul ji7(z) is
given as a rational function of the form
ey - PrlETL B B, B D)

Qu(EL", B¢ BN, BT, BLD)

where Pi7 and Q17 denote polynomials of degree 9 in five variables with integer coefficients, where coefficients are
non-zero only if the sum of products of weights and corresponding degrees is equal to 36.

In a sense, this result is a direct analogue of formula (2) expressing the classical j-invariant for PSL(2,7Z) in
terms of classical holomorphic Eisenstein series.

Furthermore, formula (7) implies that the Eisenstein series Eég), for £ = 2,3,4,5,6 may be expressed as a linear

combination of dilations of series Fsy, hence the function

2
<6$(;707127) _0’!/(%’0’ 127))

2n(z)n(172)
is a rational function in the Eisenstein series Fy(z), E4(172), Es(z), Es(172), Es(z), Es(172), E10(z), E10(172),
E13(z) and E12(17z) with integer coefficients.
Proceeding in a similar manner, for example when N = 29 or N = 47, we obtain other relations between theta
functions, eta functions and holomorphic Eisenstein series Foy.

6.2. Groups I'g(N)" of higher genus. There are 38 different square-free levels N such that X has genus one.
Similarly, there are 39 and 31 different square-free N such that X has genus two and three, respectively. In [7],
the authors studied the g-expansions for the corresponding function fields, proving that each function field admits
two generators with various properties, such as minimal pole at infinity and integer coefficients. In particular, a
polynomial relation was computed for each pair of generators, thus giving an algebraic equation for the corresponding
projective curve. In future studies, we plan to investigate the various properties of these elliptic (genus one)
and hyperelliptic (genus two) curves. There are a vast number of problems, both arithmetic and analytic, to
be considered given that one knows the uniformizing group, a projective equation, g-expansions, and relations to
holomorphic Eisenstein series.

REFERENCES

[1] Seminar on complexr multiplication, eds. A. Borel, S. Chowla, C. S. Herz, K. Iwasawa, J. P. Serre, Lecture Notes in Mathematics
21 Springer-Verlag, Berlin-New York, 1966.

[2] J. H. Conway, S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339.

[3] C.J. Cummins, Congruence subgroups of groups commensurable with PSL(2,Z) of genus 0 and 1, Experiment. Math. 13 (2004),
361-382.

[4] T. Gannon, Monstrous moonshine: the first twenty-five years, Bull. London Math. Soc. 38 (2006), 1-33.

[5] T. Gannon, Moonshine Beyond the Monster. The Bridge Connecting Algebra, Modular Forms and Physics, Cambridge Monographs
on Mathematical Physics, Cambridge University Press, Cambridge, 2006.

[6] J. Jorgenson, L. Smajlovié¢, and H. Then, On the distribution of eigenvalues of Maass forms on certain moonshine groups, Math.
Comp. 83 (2014), 3039-3070.

[7] J. Jorgenson, L. Smajlovié¢, and H. Then, Kronecker’s limit formula, holomorphic modular functions and g-expansions on certain
arithmetic groups, accepted for publication in Ezperiment. Math., http://arxiv.org/abs/1309.0648.

[8] J. Jorgenson, L. Smajlovié, and H. Then, data page http://www.efsa.unsa.ba/~lejla.smajlovic/

[9] T. Miezaki, H. Nozaki, and J. Shigezumi, On the zeros of Eisenstein series for I'§(2) and I'{(3), J. Math. Soc. Japan 59 (2007),
693-706.

[10] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, 7, Springer-Verlag, New York, 1973.

DEPARTMENT OF MATHEMATICS, THE CITY COLLEGE OF NEW YORK, CONVENT AVENUE AT 138TH STREET, NEW YORK, NY 10031
USA, E-MAIL: JJORGENSON@MINDSPRING.COM

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SARAJEVO, ZMAJA OD BOSNE 35, 71000 SARAJEVO, BOSNIA AND HERZEGOVINA,
E-MAIL: LEJLAS@QPMF.UNSA.BA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRISTOL, UNIVERSITY WALK, BRrisToL, BS8 1TW, UNITED KINGDOM, E-MAIL:
HOLGER.THEN@BRISTOL.AC.UK



